Pathology & Oncology Research

, Volume 25, Issue 1, pp 377–389 | Cite as

Effects of microRNA-708 on Epithelial-Mesenchymal Transition, Cell Proliferation and Apoptosis in Melanoma Cells by Targeting LEF1 through the Wnt Signaling Pathway

  • Xiao-Fei Song
  • Qi-Hua Wang
  • Ran Huo
Original Article


This study was conducted in order to elucidate the role microRNA-708 (miR-708) plays between proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) involving melanoma cells by targeting using LEF1 through the Wnt signaling pathway. Male Kunming mice were selected and subsequently divided into normal and model groups to take part in this study. Following cell line selection, the B16 cells with the highest miR-708 expression were selected and assigned into the control, blank, negative control (NC), miR-708 mimic, miR-708 inhibitor, siRNA-LEF1, and miR-708 inhibitor + siRNA-LEF1 groups. A Bioinformatics Web service and dual-luciferase reporter assay were conducted in order to determine the relationship between LEF1 and miR-708. The RT-qPCR method was performed in order to detect the miR-708 expression and mRNA expressions of LEF1, β-catenin, Wnt3a, N-cadherin, Bcl-2, Bax, Caspase3, E-cadherin, and western blotting was used in order to detect the protein expressions of these genes. MTT assay, scratch test, Transwell assay, and flow cytometry were all conducted in order to detect the cell proliferation, migration, invasion, and cycle/apoptosis, respectively. LEF1 was verified as the target gene of miR-708. In comparison with the normal group, the model group had reduced expressions of miR-708, Bax, Caspase3, and E-cadherin, while showing elevated expressions of LEF1, β-catenin, Bcl-2, Wnt3a, and N-cadherin. In comparison to the blank and control groups, the miR-708, mimic, and siRNA-LEF1 groups had elevated expressions of Bax, Caspase3, and E-cadherin, while also showing enhanced cell apoptosis. The miR-708, mimic, and siRNA-LEF1 groups also had decreased expressions of LEF1, β-catenin, Bcl-2, Wnt3a, and N-cadherin, and reduced optical density value 48 h and 72 h after transfection. Besides, these two groups showed declined cell migration and invasion, as well as lengthened G0/G1 phase (increased cell number) and shortened S phase (decreased cell number). Our findings demonstrated that an overexpressed miR-708 inhibits the proliferation, invasion, migration, and EMT, but also promotes the apoptosis of melanoma cells by targeting LEF1 through the suppression of the Wnt signaling pathway.


MicroRNA-708 Epithelial-mesenchymal transition Melanoma cells Lymphoid enhancer-binding factor-1 Wnt signaling pathway 



We would like to acknowledge the helpful comments on this paper received from our reviewers.

Compliance with Ethical Standards

Conflict of Interest



  1. 1.
    Busser B, Lupo J, Sancey L, Mouret S, Faure P, Plumas J, Chaperot L, Leccia MT, Coll JL, Hurbin A, Hainaut P, Charles J (2017) Plasma circulating tumor DNA levels for the monitoring of melanoma patients: landscape of available technologies and clinical applications. Biomed Res Int 2017:5986129CrossRefGoogle Scholar
  2. 2.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, CJ W, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30CrossRefGoogle Scholar
  4. 4.
    Miller AJ, Mihm MC Jr (2006) Melanoma. N Engl J Med 355:51–65CrossRefGoogle Scholar
  5. 5.
    Wu S, Singh RK (2011) Resistance to chemotherapy and molecularly targeted therapies: rationale for combination therapy in malignant melanoma. Curr Mol Med 11:553–563CrossRefGoogle Scholar
  6. 6.
    Melis C, Rogiers A, Bechter O, van den Oord JJ (2017) Molecular genetic and immunotherapeutic targets in metastatic melanoma. Virchows Arch.
  7. 7.
    Ndoye A Weeraratna AT (2016) Autophagy- an emerging target for melanoma therapy. F1000research 5:1888Google Scholar
  8. 8.
    Lelli D, Pedone C, Sahebkar A (2017) Curcumin and treatment of melanoma: the potential role of microRNAs. Biomed Pharmacother 88:832–834CrossRefGoogle Scholar
  9. 9.
    Sun V, Zhou WB, Majid S, Kashani-Sabet M, Dar AA (2014) MicroRNA-mediated regulation of melanoma. Br J Dermatol 171:234–241CrossRefGoogle Scholar
  10. 10.
    Luo C, Weber CE, Osen W, Bosserhoff AK, Eichmuller SB (2014) The role of microRNAs in melanoma. Eur J Cell Biol 93:11–22CrossRefGoogle Scholar
  11. 11.
    Leibowitz-Amit R, Sidi Y, Avni D (2012) Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res 25:740–757CrossRefGoogle Scholar
  12. 12.
    Li G, Yang F, Xu H, Yue Z, Fang X, Liu J (2015) MicroRNA-708 is downregulated in hepatocellular carcinoma and suppresses tumor invasion and migration. Biomed Pharmacother 73:154–159CrossRefGoogle Scholar
  13. 13.
    Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, Dahiya R (2011) MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 71:6208–6219CrossRefGoogle Scholar
  14. 14.
    Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6:5917CrossRefGoogle Scholar
  15. 15.
    Murakami T, Saitoh I, Sato M, Inada E, Soda M, Oda M, Domon H, Iwase Y, Sawami T, Matsueda K, Terao Y, Ohshima H, Noguchi H, Hayasaki H (2017) Isolation and characterization of lymphoid enhancer factor-1-positive deciduous dental pulp stem-like cells after transfection with a piggyBac vector containing LEF1 promoter-driven selection markers. Arch Oral Biol 81:110–120CrossRefGoogle Scholar
  16. 16.
    Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, Shahheydari H, Tembe V, Thompson JF, Saw RP, Howle J, Hayward NK, Johansson P, Scolyer RA, Kefford RF, Rizos H (2014) Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun 5:5694CrossRefGoogle Scholar
  17. 17.
    Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D'Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695CrossRefGoogle Scholar
  18. 18.
    O'Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, Li L, Herlyn M, Villanueva J, Liu Q, Yin X, Widura S, Nelson J, Ruiz N, Camilli TC, Indig FE, Flaherty KT, Wargo JA, Frederick DT, Cooper ZA, Nair S, Amaravadi RK, Schuchter LM, Karakousis GC, Xu W, Xu X, Weeraratna AT (2013) Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 3:1378–1393CrossRefGoogle Scholar
  19. 19.
    Ayuk SM, Abrahamse H, Houreld NN (2016) The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B 161:368–374CrossRefGoogle Scholar
  20. 20.
    Jang JS, Jeon HS, Sun Z, Aubry MC, Tang H, Park CH, Rakhshan F, Schultz DA, Kolbert CP, Lupu R, Park JY, Harris CC, Yang P, Jen J (2012) Increased miR-708 expression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers. Clin Cancer Res 18:3658–3667CrossRefGoogle Scholar
  21. 21.
    Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, Mittal V (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23:63–76CrossRefGoogle Scholar
  22. 22.
    Perez EC, Machado J Jr, Aliperti F, Freymuller E, Mariano M, Lopes JD (2008) B-1 lymphocytes increase metastatic behavior of melanoma cells through the extracellular signal-regulated kinase pathway. Cancer Sci 99:920–928CrossRefGoogle Scholar
  23. 23.
    Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Palmer AA, Zhang XD, Thompson JF, Bron LP, Hersey P (2005) Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol 58:1163–1169CrossRefGoogle Scholar
  24. 24.
    Hess AR, Postovit LM, Margaryan NV, Seftor EA, Schneider GB, Seftor RE, Nickoloff BJ, Hendrix MJ (2005) Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res 65:9851–9860CrossRefGoogle Scholar
  25. 25.
    Guo P, Lan J, Ge J, Nie Q, Mao Q, Qiu Y (2013) miR-708 acts as a tumor suppressor in human glioblastoma cells. Oncol Rep 30:870–876CrossRefGoogle Scholar
  26. 26.
    Cho JH, Robinson JP, Arave RA, Burnett WJ, Kircher DA, Chen G, Davies MA, Grossmann AH, VanBrocklin MW, McMahon M, Holmen SL (2015) AKT1 activation promotes development of melanoma metastases. Cell Rep 13:898–905CrossRefGoogle Scholar
  27. 27.
    Vizkeleti L, Ecsedi S, Rakosy Z, Orosz A, Lazar V, Emri G, Koroknai V, Kiss T, Adany R, Balazs M (2012) The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol 33:2189–2199CrossRefGoogle Scholar
  28. 28.
    De Donatis GM, Pape EL, Pierron A, Cheli Y, Hofman V, Hofman P, Allegra M, Zahaf K, Bahadoran P, Rocchi S, Bertolotto C, Ballotti R, Passeron T (2016) NF-kB2 induces senescence bypass in melanoma via a direct transcriptional activation of EZH2. Oncogene 35:2735–2745CrossRefGoogle Scholar
  29. 29.
    Redondo P, Lloret P, Idoate M, Inoges S (2005) Expression and serum levels of MMP-2 and MMP-9 during human melanoma progression. Clin Exp Dermatol 30:541–545CrossRefGoogle Scholar
  30. 30.
    Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J (2013) ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res 73:6068–6079CrossRefGoogle Scholar
  31. 31.
    Liang J, Li Y, Daniels G, Sfanos K, De Marzo A, Wei J, Li X, Chen W, Wang J, Zhong X, Melamed J, Zhao J, Lee P (2015) LEF1 targeting EMT in prostate cancer invasion is regulated by miR-34a. Mol Cancer Res 13:681–688CrossRefGoogle Scholar
  32. 32.
    Cui XP, Xing Y, Chen JM, Dong SW, Ying DJ, Yew DT (2011) Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir J Med Sci 180:387–393CrossRefGoogle Scholar
  33. 33.
    Castiglia D, Bernardini S, Alvino E, Pagani E, De Luca N, Falcinelli S, Pacchiarotti A, Bonmassar E, Zambruno G, D'Atri S (2008) Concomitant activation of Wnt pathway and loss of mismatch repair function in human melanoma. Genes Chromosom Cancer 47:614–624CrossRefGoogle Scholar
  34. 34.
    Sun L, Liu T, Zhang S, Guo K, Liu Y (2017) Oct4 induces EMT through LEF1/beta-catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncol Lett 13:2599–2606CrossRefGoogle Scholar
  35. 35.
    Spangler B, Vardimon L, Bosserhoff AK, Kuphal S (2011) Post-transcriptional regulation controlled by E-cadherin is important for c-Jun activity in melanoma. Pigment Cell Melanoma Res 24:148–164CrossRefGoogle Scholar
  36. 36.
    Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397CrossRefGoogle Scholar
  37. 37.
    Chen H, Gao X, Sun Z, Wang Q, Zuo D, Pan L, Li K, Chen J, Chen G, Hu K, Li K, Shah AS, Huang T, Zeeshan Bhatti M, Tong L, Jiao C, Liu J, Chen T, Yao L, Dang Y, Liu T, Li L (2017) REGgamma accelerates melanoma formation by regulating Wnt/beta-catenin signaling pathway. Exp Dermatol 26:1118–1124Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Department of Aesthetic Plastic and Burn SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanPeople’s Republic of China
  2. 2.Department of DermatologyLinyi Dermatology HospitalLinyiPeople’s Republic of China

Personalised recommendations