Advertisement

Pathology & Oncology Research

, Volume 25, Issue 1, pp 21–31 | Cite as

Molecular Subgroups of Glioblastoma– an Assessment by Immunohistochemical Markers

  • Ádám Nagy
  • Ferenc Garzuly
  • Gergely Padányi
  • Iván Szűcs
  • Ádám Feldmann
  • Balázs Murnyák
  • Tibor Hortobágyi
  • Bernadette KálmánEmail author
Original Article

Abstract

Comprehensive molecular characterization of and novel therapeutic approaches to glioblastoma have been explored as a result of advancements in biotechnologies. In this study, we aimed to bring basic research discoveries closer to clinical practice and ultimately incorporate molecular classification into the routine histopathological evaluation of grade IV gliomas. Integrated results of genome-wide sequencing, transcriptomic and epigenomic analyses by The Cancer Genome Atlas Network defined the classic, proneural, neural and mesenchymal subtypes of this tumor. In a retrospective cohort, we analyzed selected subgroup-defining molecular markers in formalin-fixed paraffin-embedded surgical specimens by immunohistochemistry. Quantitative and qualitative scores of marker expression were tested in hierarchical cluster analyses to evaluate segregations of the molecular subgroups, which then were correlated with clinical parameters including patients’ age, gender and overall survival. Our study has confirmed the separation of molecular glioblastoma subgroups with clear trends regarding clinical correlations. Future analyses in a larger, prospective cohort using similar methods are expected to facilitate the development of a molecular diagnostic panel that may complement routine histological work up and support prognostication as well as treatment decisions in glioblastoma.

Keywords

Glioblastoma Molecular subgroups Translation Clinical setting 

Notes

Acknowledgements

These works were supported by an anonymous private donation and the University of Pecs internal and external funding systems. TH received support from the Hungarian Brain Research Programme (NAP KTIA_13_NAP-A-II/7) and GINOP-2.3.2-15-2016-00043.The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

References

  1. 1.
    Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefGoogle Scholar
  2. 2.
    Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303(23):1323–1329CrossRefGoogle Scholar
  3. 3.
    Laperriere N, Zuraw L, Cairncross G, Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64(3):259–273CrossRefGoogle Scholar
  4. 4.
    Chaurasia A, Park SH, Seo JW, Park CK (2016) Immunohistochemical analysis of ATRX, IDH1 and p53 in Glioblastoma and their correlations with patient survival. J Korean Med Sci 31(8):1208–1214CrossRefGoogle Scholar
  5. 5.
    Eidel O, Burth S, Neumann JO, Kieslich PJ, Sahm F, Jungk C et al (2017) Tumor infiltration in enhancing and non-enhancing parts of Glioblastoma: a correlation with histopathology. PLoS One 12(1):e0169292CrossRefGoogle Scholar
  6. 6.
    The Cancer Genome Atlas (TCGA) Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  7. 7.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefGoogle Scholar
  8. 8.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477CrossRefGoogle Scholar
  9. 9.
    Aubry M, de Tayrac M, Etcheverry A, Clavreul A, Saikali S, Menei P et al (2016) From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity. Oncotarget 6(14):12094–12109Google Scholar
  10. 10.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522CrossRefGoogle Scholar
  11. 11.
    Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y et al (2016) Clonal variation in drug and radiation response among Glioma-initiating cells is linked to proneural-Mesenchymal transition. Cell Rep 17(11):2994–3009CrossRefGoogle Scholar
  12. 12.
    He ZC, Ping YF, Xu SL, Lin Y, Yu SC, Kung HF et al (2015) Lower MGMT expression predicts better prognosis in proneural-like glioblastoma. Int J Clin Exp Med 8(11):20287–20294Google Scholar
  13. 13.
    Myung JK, jin Cho H, Kim H, Park CK, Lee SH, Choi SH et al (2014) Prognosis of glioblastoma with oligodendroglioma component is associated with the IDH1 mutation and MGMT methylation status. Transl Oncol 7(6):712–719CrossRefGoogle Scholar
  14. 14.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WKet al. (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefGoogle Scholar
  15. 15.
    Le Mercier M, Hastir D, Lopez XM, De Neve N, Maris C, Trepant AL et al (2012) A simplified approach for the molecular classification of glioblastomas. PLoS One 7(9):e45475CrossRefGoogle Scholar
  16. 16.
    Lee KS, Choe G, Nam KH, Seo AN, Yun S, Kim KJ et al (2013) Immunohistochemical classification of primary and secondary glioblastomas. Korean J Pathol 47(6):541–548CrossRefGoogle Scholar
  17. 17.
    Conroy S, Kruyt FA, Joseph JV, Balasubramaniyan V, Bhat KP, Wagemakers M et al (2014) Subclassification of newly diagnosed glioblastomas through an immunohistochemical approach. PLoS One 9(12):e115687CrossRefGoogle Scholar
  18. 18.
    Esteve-Codina A, Arpi O, Martinez-García M, Pineda E, Mallo M, Gut M et al (2017) A comparison of RNA-Seq results from paired formalin-fixed paraffin-embedded and fresh-frozen Glioblastoma tissue samples. PLoS One 12(1):e0170632CrossRefGoogle Scholar
  19. 19.
    Colman H, Zhang Z, Sulma EP, McDonald JM, Shooshtari NL, Rivera A et al (2010) A multigene predictor of outcome in glioblastoma. Neuro-Oncology 12(1):49–57CrossRefGoogle Scholar
  20. 20.
    Joseph NM, Phillips J, Dahiya S, Felicella MM, Tihan T, Brat DJ et al (2013) Diagnostic implications of IDH1-R132H and OLIG2 expression patterns in rare and challenging glioblastoma variants. Mod Pathol 26(3):315–326CrossRefGoogle Scholar
  21. 21.
    Chen L, Lin ZX, Li GS, Zhou CF, Chen YP, Wang XF et al (2015) Classification of microvascular patterns via cluster analysis reveals their prognostic significance in glioblastoma. Hum Pathol 46(1):120–128CrossRefGoogle Scholar
  22. 22.
    Denicolaï E, Tabouret E, Colin C, Metellus P, Nanni I, Boucard C et al (2016) Molecular heterogeneity of glioblastomas: does location matter? Oncotarget 7(1):902–913CrossRefGoogle Scholar
  23. 23.
    Cai J, Zhang C, Zhan W, Wang G, Yao K, Wang Z et al (2016) ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience 3(7–8):258–265Google Scholar
  24. 24.
    Kalman B, Szep E, Garzuly F (2013) Post DE. Epidermal growth factor receptor as a therapeutic target in glioblastoma. NeuroMolecular Med 15(2):420–434CrossRefGoogle Scholar
  25. 25.
    Lindberg OR, McKinney A, Engler JR, Koshkakaryan G, Gong H, Robinson AE et al (2016) GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity. Oncotarget 7(48):79101–79116CrossRefGoogle Scholar
  26. 26.
    Vizcaíno MA, Shah S, Eberhart CG, Rodriguez FJ (2015) Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum Pathol 46(9):1323–1330CrossRefGoogle Scholar
  27. 27.
    Xie B, Fan X, Lei Y, Chen R, Wang J, Fu C et al (2016) A novel de novo microdeletion at 17q11. 2 adjacent to NF1 gene associated with developmental delay, short stature, microcephaly and dysmorphic features. Mol Cytogenet 9(1):31–41CrossRefGoogle Scholar
  28. 28.
    Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS (2017) A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics 18(1):127–128CrossRefGoogle Scholar
  29. 29.
    Nagy A, Eder K, Selak MA, Kalman B (2015) Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res 1595:127–142CrossRefGoogle Scholar
  30. 30.
    Setty P, Hammes J, Rothämel T, Vladimirova V, Kramm CM, Pietsch T et al (2010) A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples. J Mol Diagn 12(6):750–756CrossRefGoogle Scholar
  31. 31.
    Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M et al (2016) Expression of Idh1 R132H in the murine subventricular zone stem cell niche recapitulates features of early Gliomagenesis. Cancer Cell 30(4):578–594CrossRefGoogle Scholar
  32. 32.
    Zhu H, Zhang Y, Chen J, Qiu J, Huang K, Wu M, Xia C (2017) IDH1 R132H mutation enhances cell migration by activating AKT-mTOR signaling pathway, but sensitizes cells to 5-FU treatment as NADPH and GSH are reduced. PLoS One 12(1):e0169038CrossRefGoogle Scholar
  33. 33.
    Yoon KS, Lee MC, Kang SS, Kim JH, Jung S, Kim YJ et al (2001) p53 mutation and epidermal growth factor receptor overexpression in glioblastoma. J Korean Med Sci 16(4):481–488CrossRefGoogle Scholar
  34. 34.
    Liu Y, Wang F, Liu Y, Yao Y, Lv X, Dong B et al (2016) RNF135, RING finger protein, promotes the proliferation of human glioblastoma cells in vivo and in vitro via the ERK pathway. Sci Rep 6:e20624CrossRefGoogle Scholar
  35. 35.
    Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NH, Nicot N et al (2014) Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol 127(2):203–219CrossRefGoogle Scholar
  36. 36.
    Cancer Genome Atlas (TCGA) Research Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517(7536):576–582CrossRefGoogle Scholar
  37. 37.
    Eckel-Passow JE, Lachanc DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508CrossRefGoogle Scholar
  38. 38.
    Olar A, Aldape KD (2014) Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 232(2):165–177CrossRefGoogle Scholar
  39. 39.
    Murnyák B, Csonka T, Klekner Á, Hortobágyi T (2013) Occurrence and molecular pathology of low grade gliomas. Alacsony grádusú gliális daganatok előfordulása és molekuláris patológiája. (in Hungarian) Ideggyógyászati Szemle/Clinical. Neuroscience 66:305–311Google Scholar
  40. 40.
    Murnyák B, Csonka T, Hegyi K, Méhes G, Klekner Á, Hortobágyi T (2013) Occurrence and molecular pathology of high grade gliomas. (Magas grádusú gliomák előfordulása és molekuláris patológiája.) (in Hungarian) Ideggyógyászati Szemle/Clinical. Neuroscience 66:312–321Google Scholar
  41. 41.
    McKeever PE, Dennis TR, Burgess AC, Meltzer PS, Marchuk DA, Trent JM (1996) Chromosome breakpoint at 17q11. 2 and insertion of DNA from three different chromosomes in a glioblastoma with exceptional glial fibrillary acidic protein expression. Cancer Genet Cytogenet 87(1):41–47CrossRefGoogle Scholar
  42. 42.
    Vandenbroucke I, Van Oostveldt P, Coene E, De Paepe A, Messiaen L (2004) Neurofibromin is actively transported to the nucleus. FEBS Lett 560(1–3):98–102CrossRefGoogle Scholar
  43. 43.
    Liu YC, Wang YZ (2015) Role of yes-associated protein 1 in gliomas: pathologic and therapeutic aspects. Tumor Biol 36(4):2223–2227CrossRefGoogle Scholar
  44. 44.
    Kondo I, Shimizu N (1983) Mapping of the human gene for epidermal growth factor receptor (EGFR) on the p13→ q22 region of chromosome 7. Cytogenet Genome Res 35(1):9–14CrossRefGoogle Scholar
  45. 45.
    Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, Gonzalez-Darder J et al (2010) New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol 23(6):856–865CrossRefGoogle Scholar
  46. 46.
    Dasari VR, Velpula KK, Alapati K, Gujrati M, Tsung AJ (2012) Cord blood stem cells inhibit epidermal growth factor receptor translocation to mitochondria in glioblastoma. PLoS One 7(2):e31884CrossRefGoogle Scholar
  47. 47.
    Csonka T, Murnyák B, Szepesi R, Kurucz A, Klekner Á, Hortobágyi T (2014) Poly(ADP-ribose) polymerase-1 (PARP1) and p53 labelling index correlates with tumour grade in meningiomas. Folia Neuropathol 52:111–120CrossRefGoogle Scholar
  48. 48.
    Csonka T, Murnyák B, Szepesi R, Bencze J, Bognár L, Klekner Á, Hortobágyi T (2016) Assessment of candidate immunohistochemical prognostic markers of meningioma recurrence. Folia Neuropathol 54:114–126CrossRefGoogle Scholar
  49. 49.
    Murnyák B, Kouhsari MC, Hershkovitch R, Kálmán B, Marko-Varga G, Klekner Á, Hortobágyi T (2017) PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget 8(28):46348–46362.  https://doi.org/10.18632/oncotarget.18013
  50. 50.
    Murnyák B, Hortobágyi T (2016) Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget 7:64910–64920CrossRefGoogle Scholar
  51. 51.
    Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ (1987) Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci 84(21):7716–7719CrossRefGoogle Scholar
  52. 52.
    England B, Huang T, Karsy M (2013) Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumor Biol 34(4):2063–2074CrossRefGoogle Scholar
  53. 53.
    Smardova J, Liskova K, Ravcukova B, Kubiczkova L, Sevcikova S, Michalek J et al (2013) High frequency of temperature-sensitive mutants of p53 in Glioblastoma. Pathol Oncol Res 19(3):421–428CrossRefGoogle Scholar
  54. 54.
    Kawasoe T, Takeshima H, Yamashit S, Mizuguch S, Fukushima T, Yokogami K et al (2015) Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme. J Neurosurg 122(2):317–323CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Ádám Nagy
    • 1
  • Ferenc Garzuly
    • 2
  • Gergely Padányi
    • 2
  • Iván Szűcs
    • 3
  • Ádám Feldmann
    • 4
  • Balázs Murnyák
    • 5
  • Tibor Hortobágyi
    • 5
  • Bernadette Kálmán
    • 1
    • 2
    Email author
  1. 1.Faculty of Health Sciences, School of Graduate StudiesUniversity of PécsPécsHungary
  2. 2.Markusovszky University Teaching Hospital, University of PecsSzombathelyHungary
  3. 3.St Borbála HospitalTatabányaHungary
  4. 4.Faculty of Medicine, Institute of Behavioral SciencesUniversity of PécsPécsHungary
  5. 5.Department of Pathology, Division of NeuropathologyUniversity of DebrecenDebrecenHungary

Personalised recommendations