Pathology & Oncology Research

, Volume 25, Issue 1, pp 1–9 | Cite as

MiR-490-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Migration and Invasion by Directly Regulating ROBO1

  • Weiqing Chen
  • Lijun Ye
  • Dengcheng Wen
  • Feihua ChenEmail author
Original Article


Studies have investigated the effect of ROBO1. All the same, the relationship between miR-490-5p and ROBO1, and the underlying mechanism are still unclear. We aimed to study the effect of microRNA-490-5p (miR-490-5p) on hepatocellular carcinoma (HCC) cell proliferation, migration and invasion by directly regulating ROBO1. The expression of miR-490-5p and ROBO1 in HCC tissues and cells were tested by RT-qPCR, and the Hep3B cells were selected for subsequent experiments. We confirmed the relationship between miR-490-5p and ROBO1 by luciferase reporter system. The effects of miR-490-5p on cell proliferation, migration and invasion of Hep3B cells were assessed by MTT assay, colony formation assay, wound healing assay and transwell assay, respectively. Flow cytometry was employed to detect the influence of miR-490-5p on cell cycle and apoptosis of Hep3B cells. The expression of miR-490-5p was down-regulated, while ROBO1 was up-regulated in HCC tissues and cells than the controls. MiR-490-5p can target ROBO1. MiR-490-5p inhibited cell proliferation, migration and invasion, but promoted cell apoptosis of Hep3B cells by inhibiting ROBO1. We confirmed that miR-490-5p could directly suppress ROBO1, which might be a potential mechanism in inhibiting HCC cell proliferation, migration and invasion.


Hepatocellular carcinoma Hep3B MiR-490-5p ROBO1 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chuang KH, Whitney-Miller CL, Chu CY, Zhou Z, Dokus MK, Schmit S, Barry CT (2015) MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology (Baltimore, Md) 62(2):466–480. CrossRefGoogle Scholar
  2. 2.
    Allen MD, Luong P, Hudson C, Leyton J, Delage B, Ghazaly E, Cutts R, Yuan M, Syed N, Lo Nigro C, Lattanzio L, Chmielewska-Kassassir M, Tomlinson I, Roylance R, Whitaker HC, Warren AY, Neal D, Frezza C, Beltran L, Jones LJ, Chelala C, Wu BW, Bomalaski JS, Jackson RC, Lu YJ, Crook T, Lemoine NR, Mather S, Foster J, Sosabowski J, Avril N, Li CF, Szlosarek PW (2014) Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res 74(3):896–907. CrossRefGoogle Scholar
  3. 3.
    Chinn GA, Hirokawa KE, Chuang TM, Urbina C, Patel F, Fong J, Funatsu N, Monuki ES (2015) Agenesis of the corpus callosum due to defective glial wedge formation in Lhx2 mutant mice. Cereb Cortex 25(9):2707–2718. CrossRefGoogle Scholar
  4. 4.
    Kim SH, Lee KH, Kim DY, Kwak E, Kim S, Kim KT (2015) Rhythmic control of mRNA stability modulates circadian amplitude of mouse Period3 mRNA. J Neurochem 132(6):642–656. CrossRefGoogle Scholar
  5. 5.
    Li S, Xu X, Xu X, Hu Z, Wu J, Zhu Y, Chen H, Mao Y, Lin Y, Luo J, Zheng X, Xie L (2013) MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos. Biochem Biophys Res Commun 441(4):976–981. CrossRefGoogle Scholar
  6. 6.
    Chen K, Zeng J, Tang K, Xiao H, Hu J, Huang C, Yao W, Yu G, Xiao W, Guan W, Guo X, Xu H, Ye Z (2016) miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA. Biol Cell 108(2):41–50. CrossRefGoogle Scholar
  7. 7.
    Zhang LY, Liu M, Li X, Tang H (2013) miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem 288(6):4035–4047. CrossRefGoogle Scholar
  8. 8.
    Saini V, Loers G, Kaur G, Schachner M, Jakovcevski I (2016) Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury. Eur J Neurosci 44(1):1734–1746. CrossRefGoogle Scholar
  9. 9.
    Parray A, Siddique HR, Kuriger JK, Mishra SK, Rhim JS, Nelson HH, Aburatani H, Konety BR, Koochekpour S, Saleem M (2014) ROBO1, A tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int J Cancer 135(11):2493–2506. CrossRefGoogle Scholar
  10. 10.
    Liu X, Cai J, Sun Y, Gong R, Sun D, Zhong X, Jiang S, He X, Bao E, Yang L, Li Y (2015) MicroRNA-29a inhibits cell migration and invasion via targeting roundabout homolog 1 in gastric cancer cells. Mol Med Rep 12(3):3944–3950. CrossRefGoogle Scholar
  11. 11.
    Ito H, Funahashi S, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, Kinoshita Y, Watanabe A, Hippo Y, Ohtomo T, Iwanari H, Nakajima A, Makuuchi M, Fukayama M, Hirata Y, Hamakubo T, Kodama T, Tsuchiya M, Aburatani H (2006) Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res 12(11 Pt 1):3257–3264. CrossRefGoogle Scholar
  12. 12.
    Ao JY, Chai ZT, Zhang YY, Zhu XD, Kong LQ, Zhang N, Ye BG, Cai H, Gao DM, Sun HC (2015) Robo1 Promotes angiogenesis in hepatocellular carcinoma through the rho family of guanosine triphosphatases' signaling pathway. Tumour Biol 36(11):8413–8424. CrossRefGoogle Scholar
  13. 13.
    Sullivan WJ, Christofk HR (2015) The metabolic milieu of metastases. Cell 160(3):363–364. CrossRefGoogle Scholar
  14. 14.
    Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ (2009) Lin28 Promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848. CrossRefGoogle Scholar
  15. 15.
    Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB, Tavazoie SF (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160(3):393–406. CrossRefGoogle Scholar
  16. 16.
    Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, Ogata H, Karin M, Struhl K, Hadzopoulou-Cladaras M, Iliopoulos D (2011) An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147(6):1233–1247. CrossRefGoogle Scholar
  17. 17.
    Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017. CrossRefGoogle Scholar
  18. 18.
    Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361(15):1437–1447. CrossRefGoogle Scholar
  19. 19.
    Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S, Alberghini M, Grilli A, Knuutila S, Schaefer KL, Mattia G, Negrini M, Picci P, Serra M, Scotlandi K (2012) miR-34a predicts survival of Ewing's sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol 226(5):796–805. CrossRefGoogle Scholar
  20. 20.
    Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y, Yang W, Li MS, Shin VY, Tong JH, Kang W, Zhang L, Li M, Wang L, Lu L, Chan RL, Wong SH, Yu J, Chan MT, Chan FK, Sung JJ, Cheng AS, Cho CH (2015) Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote helicobacter pylori-induced gastric carcinogenesis. Cancer Res 75(4):754–765. CrossRefGoogle Scholar
  21. 21.
    Sun KX, Chen Y, Chen S, Liu BL, Feng MX, Zong ZH, Zhao Y (2016) The correlation between microRNA490-3p and TGFalpha in endometrial carcinoma tumorigenesis and progression. Oncotarget 7(8):9236–9249.  10.18632/Oncotarget.7061 Google Scholar
  22. 22.
    Wojcicka A, Swierniak M, Kornasiewicz O, Gierlikowski W, Maciag M, Kolanowska M, Kotlarek M, Gornicka B, Koperski L, Niewinski G, Krawczyk M, Jazdzewski K (2014) Next generation sequencing reveals microRNA isoforms in liver cirrhosis and hepatocellular carcinoma. Int J Biochem Cell Biol 53:208–217. CrossRefGoogle Scholar
  23. 23.
    Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, Jiang Z, Zhang Z, Yang R, Chen J, Li Z, Tang A, Li X, Ye J, Guan Z, Gui Y, Cai Z (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6(3):e18286. CrossRefGoogle Scholar
  24. 24.
    Xu S, Gu G, Ni Q, Li N, Yu K, Li X, Liu C (2015) The expression of AEG-1 and cyclin D1 in human bladder urothelial carcinoma and their clinicopathological significance. Int J Clin Exp Med 8(11):21222–21228Google Scholar
  25. 25.
    Niemoeller OM, Niyazi M, Corradini S, Zehentmayr F, Li M, Lauber K, Belka C (2011) MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat Oncol 6:29. CrossRefGoogle Scholar
  26. 26.
    Pearson GR, Orr T, Rabin H, Cicmanec J, Ablashi D, Armstrong G (1973) Antibody patterns to herpesvirus saimiri-induced antigens in owl monkeys. J Natl Cancer Inst 51(6):1939–1943CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Kang Y, Zhang Z, Zhang H, Duan X, Liu J, Li X, Liao W (2012) Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartil 20(12):1638–1646. CrossRefGoogle Scholar
  28. 28.
    Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y, Li Q, Qiao T, Zhao Q, Nie Y, Fan D (2010) MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 6(3):e1000879. CrossRefGoogle Scholar
  29. 29.
    Tang W, Tang J, He J, Zhou Z, Qin Y, Qin J, Li B, Xu X, Geng Q, Jiang W, Wu W, Wang X, Xia Y (2015) SLIT2/ROBO1-miR-218-1-RET/PLAG1: a new disease pathway involved in Hirschsprung's disease. J Cell Mol Med 19(6):1197–1207. CrossRefGoogle Scholar
  30. 30.
    Gara RK, Kumari S, Ganju A, Yallapu MM, Jaggi M, Chauhan SC (2015) Slit/Robo pathway: a promising therapeutic target for cancer. Drug Discov Today 20(1):156–164. CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Weiqing Chen
    • 1
  • Lijun Ye
    • 2
  • Dengcheng Wen
    • 1
  • Feihua Chen
    • 2
    Email author
  1. 1.Department of General SurgeryThe People’s Hospital of Lin’an CityLin’an CityChina
  2. 2.Department of Gynecology and ObstetricsThe People’s Hospital of Lin’an CityLin’an CityChina

Personalised recommendations