Pathology & Oncology Research

, Volume 24, Issue 1, pp 19–29 | Cite as

Tumor Preventive Efficacy of Emodin in 7,12-Dimethylbenz[a]Anthracene-Induced Oral Carcinogenesis: a Histopathological and Biochemical Approach

  • Asokan Manimaran
  • Shanmugam ManoharanEmail author
Original Article


The aim of the present study is to focus the chemopreventive potential of Emodin during 7,12-dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Tumors were developed in the buccal pouches of golden Syrian hamsters by painting with 0.5% DMBA thrice a week for 14 weeks. The status of lipid peroxidation, antioxidants and detoxification agents were utilized as biochemical endpoints and the expression pattern of apoptotic proteins was employed as molecular endpoints in addition to the histopathological studies, to substantiate the anticancer potential of Emodin. Hamsters treated with DMBA + Emodin revealed mild to moderate precancerous lesions such as hyperplasia and dysplasia whereas 100% tumor formation was noticed in hamsters treated with DMBA alone. Also, Emodin treatment modulated the status of lipid peroxidation, antioxidants, phase I and II detoxification agents and apoptotic proteins in favor of the inhibition/reversal/suppression of the oral tumorigenesis in DMBA treated hamsters. The present study thus concludes that the chemopreventive potential of Emodin relies on its pro-apoptotic and antioxidant efficacy during DMBA induced hamster buccal pouch carcinogenesis.


Oral cancer Emodin Lipid peroxidation Antioxidants Apoptosis Detoxification agents 



Financial assistance to Mr. A. Manimaran, in the form of ICMR-SRF from Indian Council of Medical Research (ICMR), New Delhi, is gratefully acknowledged.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Tieulent JL, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMedGoogle Scholar
  2. 2.
    Manoharan S, Karthikeyan S, Essa MM, Manimaran A, Selvasundaram R (2016) An overview of oral carcinogenesis. Int J nutr Pharmacol Neurol Dis 6(2):51–62. doi: 10.4103/2231-0738.179964 CrossRefGoogle Scholar
  3. 3.
    Petti S, Masood M, Scully C (2013) The magnitude of tobacco smoking-betel quid chewing-alcohol drinking interaction effect on oral cancer in South-East Asia. A meta-analysis of observational studies. PLoS One 8(11):e78999. doi: 10.1371/journal.pone.0078999 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S (2011) Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 10(2):132–137. doi: 10.1007/s12663-011-0195-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    More Y, D'Cruz AK (2013) Oral cancer: review of current management strategies. Natl Med J India 26(3):152–158PubMedGoogle Scholar
  6. 6.
    Sallam RM (2015) Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015(1):e321370. doi: 10.1155/2015/321370 Google Scholar
  7. 7.
    Manoharan S, Kavitha K, Balakrishnan S, Rajalingam K (2008) Clerodendron Inerme protects cellular integrity during 7,12-dimethylbenz[a]-anthracene induced hamster buccal pouch carcinogenesis. Afr J Trad Comp Alter Med 5(2):213–222Google Scholar
  8. 8.
    Rajasekaran D, Manoharan S, Prabhakar MM, Manimaran A (2015) Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Hum Exp Toxicol 34(9):911–921. doi: 10.1177/0960327114562033 CrossRefPubMedGoogle Scholar
  9. 9.
    Baskaran N, Manoharan S, Karthikeyan S, Prabhakar MM (2012) Chemopreventive potential of coumarin in 7, 12-dimethylbenz[a] anthracene induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev 13(10):5273–5279CrossRefPubMedGoogle Scholar
  10. 10.
    Manoharan S, Palanimuthu D, Baskaran N, Silvan S (2012) Modulating effect of lupeol on the expression pattern of apoptotic markers in 7, 12-dimethylbenz(a)anthracene induced oral carcinogenesis. Asian Pac J Cancer Prev 13(11):5753–5757CrossRefPubMedGoogle Scholar
  11. 11.
    Wang H, Khor TO, Shu L (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305CrossRefGoogle Scholar
  12. 12.
    Staničová J, Verebová V, Strejčková A (2016) Potential anticancer agent hypericin and its model compound emodin: interaction with DNA. Ceska Slov Farm 65(1):28–31PubMedGoogle Scholar
  13. 13.
    Lin WF, Wang C, Ling CQ (2015) Research progress in anti-tumor effect of emodin. Zhongguo Zhong Yao Za Zhi 40(20):3937–3940PubMedGoogle Scholar
  14. 14.
    Chen G, Zhang J, Zhang H, Xiao Y, Kao X, Liu Y, Liu Z (2015) Anti-inflammatory effect of emodin on lipopolysaccharide-induced keratitis in Wistar rats. Int J Clin Exp Med 8(8):12382–12389PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim MS, Park MJ, Kim SJ, Lee CH, Yoo H, Shin SH, Song ES, Lee SH (2005) Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol 27(3):839–846PubMedGoogle Scholar
  16. 16.
    Xue J, Ding W, Liu Y (2010) Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 81(3):173–177. doi: 10.1016/j.fitote.2009.08.020 CrossRefPubMedGoogle Scholar
  17. 17.
    Bhadauria M (2010) Dose-dependent hepatoprotective effect of emodin against acetaminophen-induced acute damage in rats. Exp Toxicol Pathol 62(6):627–635. doi: 10.1016/j.etp.2009.08.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao XY, Qiao GF, Li BX, Chai LM, Li Z, Lu YJ, Yang BF (2009) Hypoglycaemic and hypolipidaemic effects of emodin and its effect on L-type calcium channels in dyslipidaemic-diabetic rats. Clin Exp Pharmacol Physiol 36(1):29–34. doi: 10.1111/j.1440-1681.2008.05051.x CrossRefPubMedGoogle Scholar
  19. 19.
    Yagi K (1987) Lipid peroxides and human diseases. Chem Phys Lipids 45(2–4):337–351CrossRefPubMedGoogle Scholar
  20. 20.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefPubMedGoogle Scholar
  21. 21.
    Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105(1):138–147CrossRefPubMedGoogle Scholar
  22. 22.
    Palan PR, Mikhail MS, Basu MS, Romney SL (1991) Plasma levels of antioxidant beta-carotene and alpha-tocopherol in uterine cervix dysplasia and cancer. Nutr Cancer 15(1):13–20CrossRefPubMedGoogle Scholar
  23. 23.
    Beutler E, Kelly BM (1963) The effect of sodium nitrite on red cell GSH. Experientia 19(1):96–97CrossRefPubMedGoogle Scholar
  24. 24.
    Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62(1):3–11CrossRefPubMedGoogle Scholar
  25. 25.
    Kakkar BD, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):130–132PubMedGoogle Scholar
  26. 26.
    Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394CrossRefPubMedGoogle Scholar
  27. 27.
    Rotruck JT, Pope AL, Ganther HE (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590CrossRefPubMedGoogle Scholar
  28. 28.
    Omura T, Sato R (1964) The carbon monoxide binding pigment of liver microsomes. J Biol Chem 239(1):2370–2378PubMedGoogle Scholar
  29. 29.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522CrossRefPubMedGoogle Scholar
  30. 30.
    Habig WH, Pabst MJ, Jakoby WBC (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139PubMedGoogle Scholar
  31. 31.
    Carlberg BM, Mannervik G (1985) Glutathione reductase. Methods Enzymol 113(1):484–490CrossRefPubMedGoogle Scholar
  32. 32.
    Ernster L (1967) DT-Diaphorase. In: Pullman ME (ed) Estabrook RW. Methods Enzymol Academic Press, New York, pp 309–317Google Scholar
  33. 33.
    Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254CrossRefPubMedGoogle Scholar
  34. 34.
    Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR (2009) Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Singap Med J 50(2):139–146Google Scholar
  35. 35.
    Karthikeyan S, Manoharan S (2016) Cromolyn inhibits 7, 12-dimethylbenz(a) anthracene induced oral cancer through apoptotic induction and suppression of cell proliferation. Int J Pharm Bio Sci 7(1):35–42Google Scholar
  36. 36.
    Manoharan S, Rajasekaran D, Prabhakar MM, Karthikeyan S, Manimaran A (2015) Modulating effect of Enicostemma littorale on the expression pattern of apoptotic, cell proliferative, inflammatory and angiogenic markers during 7, 12-dimethylbenz (a) anthracene induced hamster buccal pouch carcinogenesis. Toxicol Int 22(1):130–140. doi: 10.4103/0971-6580.172276 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Palanimuthu D, Baskaran N, Silvan S, Rajasekaran D, Manoharan S (2012) Lupeol, a bioactive triterpene, prevents tumor formation during 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis. Pathol Oncol Res 18(4):1029–1037CrossRefPubMedGoogle Scholar
  38. 38.
    Karthikeyan S, Srinivasan R, Wani SA, Manoharan S (2013) Chemopreventive potential of chrysin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Int J Nutr Pharmacol Neurol Dis 3(1):46–53CrossRefGoogle Scholar
  39. 39.
    Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Pub Health 10(9):3886–3907. doi: 10.3390/ijerph10093886 CrossRefGoogle Scholar
  40. 40.
    Manoharan S, Wani SA, Vasudevan K, Manimaran A, Prabhakar MM, Karthikeyan S, Rajasekaran D (2013) Saffron reduction of 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev 14(2):951–957CrossRefPubMedGoogle Scholar
  41. 41.
    Danaraddi S, Koneru A, Hunasgi S, Ramalu S, Vanishree M (2014) Natural ways to prevent and treat oral cancer. J Oral Res Rev 6(1):34–39CrossRefGoogle Scholar
  42. 42.
    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharm Rev 4(8):118–126. doi: 10.4103/0973-7847.70902 CrossRefGoogle Scholar
  43. 43.
    Horn W, Maier H, Born AJ (1988) Reduction of cytochrome c by oral mucosa of patients with oropharyngeal cancer. Klin Wochenschr 66(11):105–107PubMedGoogle Scholar
  44. 44.
    Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A (2012) The role of Bcl-2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol 2012(1):e524308. doi: 10.1155/2012/524308 Google Scholar
  45. 45.
    Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474. doi: 10.1177/1947601911408889 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Manoharan S, Sindhu G, Nirmal MR, Vetrichelvi V, Balakrishnan S (2011) Protective effect of berberine on expression pattern of apoptotic, cell proliferative, inflammatory and angiogenic markers during 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pak J Biol Sci 14(20):918–932CrossRefPubMedGoogle Scholar
  47. 47.
    Prabhakar MM, Vasudevan K, Karthikeyan S, Baskaran N, Manoharan S (2012) Anti-cell proliferative efficacy of ferulic acid against 7, 12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev 13(10):5207–5211CrossRefPubMedGoogle Scholar
  48. 48.
    Bose P, Klimowicz AC, Kornaga E, Petrillo SK, Matthews TW (2012) Bax expression measured by AQUAnalysis is an independent prognostic marker in oral squamous cell carcinoma. BMC Cancer 12(1):e332. doi: 10.1186/1471-2407-12-332 CrossRefGoogle Scholar
  49. 49.
    Kaur H, Gupta S (2013) An analysis of the expression of Bcl-2, podoplanin and lymph angiogenesis in benign and malignant salivary gland tumours. J Clin Exp Pathol 3(1):e145. doi: 10.4172/2161-0681.1000145 Google Scholar
  50. 50.
    Arya V, Singh S, Daniel MJ (2016) Clinicopathological correlation of Bcl-2 oncoprotein expression in oral precancer and cancer. Oral Biol Craniofac Res 6(1):18–23. doi: 10.1016/j.jobcr.2015.12.011 Google Scholar
  51. 51.
    Rahmani A, Alzohairy M, Babiker AY, Rizvi MA, Elkarimahmad HG (2012) Clinicopathological significance of PTEN and bcl2 expressions in oral squamous cell carcinoma. Int J Clin Exp Pathol 5(9):965–971PubMedPubMedCentralGoogle Scholar
  52. 52.
    Watanabe J, Kushihata F, Honda K, Sugita A, Tateishi N, Mominoki K, Matsuda S, Kobayashi N (2004) Prognostic significance of Bcl-xL in human hepatocellular carcinoma. Surgery 135(6):604–612CrossRefPubMedGoogle Scholar
  53. 53.
    Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP, Kutok JL, Le Beau MM, Greenberg ME, Korsmeyer SJ (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci 100(16):9324–9329CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yancey D, Nelson KC, Baiz D, Hassan S, Flores A (2013) BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. PLoS One 8(9):e74561. doi: 10.1371/journal.pone.0074561 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jiang L, Luo M, Liu D, Chen B, Zhang W (2013) BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer. Cancer Cell Int 13(1):53. doi: 10.1186/1475-2867-13-53 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Biotechnology, Faculty of ScienceAnnamalai UniversityAnnamalai NagarIndia

Personalised recommendations