Pathology & Oncology Research

, Volume 22, Issue 3, pp 633–637 | Cite as

Protein Kinase CK2 Content in GL261 Mouse Glioblastoma

  • Laura Ferrer-Font
  • Estefania Alcaraz
  • Maria Plana
  • Ana Paula CandiotaEmail author
  • Emilio Itarte
  • Carles Arús
Short Communication


Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14–15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours.


Glioma CK2 content Preclinical brain tumor GBM therapeutic targets 





Protein kinase CK2





This work was supported by: SAF 2011-23870, SAF2014-52332-R, SGR191-2014 and Centro de Investigación Biomédica en Red – Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, []), an initiative of the Instituto de Salud Carlos III (Spain) co-funded by EU FEDER funds.

Conflict of interest diclosures

The authors have no financial conflicts to disclose.


  1. 1.
    Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl 19):10–14CrossRefPubMedGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 10;352(10):987–996.Google Scholar
  3. 3.
    Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma - molecular signalling and therapeutic targeting. Protein Cell 1(7):638–655CrossRefPubMedGoogle Scholar
  4. 4.
    Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30:2394–2400PubMedGoogle Scholar
  5. 5.
    Szatmári T, Lumniczky K, Désaknai S, Trajcevski S, Hidvégi EJ, Hamada H, et al. (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553CrossRefPubMedGoogle Scholar
  6. 6.
    Delgado-Goñi T, Julià-Sapé M, Candiota AP, Pumarola M, Arús C (2014) Molecular imaging coupled to pattern recognition distinguishes response to temozolomide in preclinical glioblastoma. NMR Biomed 27(11):1333–1345CrossRefPubMedGoogle Scholar
  7. 7.
    Ducan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47CrossRefGoogle Scholar
  8. 8.
    Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer Cells? Biochim Biophys Acta 1804(3):499–504CrossRefPubMedGoogle Scholar
  9. 9.
    Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ji H, Lu Z (2013) The role of protein kinase CK2 in glioblastoma development. Clin Cancer Res 19:6335–6337CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Münstermann U, Fritz G, Seitz G, Yiping L, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189:251–257CrossRefPubMedGoogle Scholar
  12. 12.
    Cozza G, Girardi C, Ranchio A, Liolli G, Sarno S, Orzeszko A, et al. (2014) Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell Mol Life Sci 71:3173–3185CrossRefPubMedGoogle Scholar
  13. 13.
    Kim J, Hwan KS (2013) CK2 inhibitor CX-4945 blocks TGF-beta1- induced epithelial-to mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS One 8(9):e74342CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Simoes RV, Garcia-Martin ML, Cerdan S, Arus C (2008) Perturbation of mouse glioma MRS pattern by induced acute hyperglycemia. NMR Biomed Mar;21(3):251–264.Google Scholar
  15. 15.
    Mangiola A, Saulnier N, De Bonis P, Orteschi D, Sica G, Lama G, et al. (2013) Gene expression profile of glioblastoma peritumoral tissue: an ex vivo study. PLoS One 8:e57145.Google Scholar
  16. 16.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  17. 17.
    Lama G, Mangiola A, Anile C, Sabatino G, De Bonis P, Lauriola L, et al. (2007) Activated ERK1/2 expression in glioblastoma multiforme and peritumor tissue. Int J Oncol 30:1333–1342PubMedGoogle Scholar
  18. 18.
    Plotnikov A, Chuderland D, Karamansha Y, Livnah O, Seger R (2011) Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation. Mol Cell Biol 31(17):3515–3530CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Agarwal M, Nitta RT, Li G (2014) Casein kinase 2: A novel player in glioblastoma therapy and cancer stem cells. Mol Genet Med 8:pii: 1000094.Google Scholar
  20. 20.
    Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, et al. (2013) Targeting protein kinase CK2 supresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19(23):6484–6494CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2015

Authors and Affiliations

  • Laura Ferrer-Font
    • 1
    • 2
    • 3
  • Estefania Alcaraz
    • 1
  • Maria Plana
    • 1
  • Ana Paula Candiota
    • 1
    • 2
    • 3
    Email author
  • Emilio Itarte
    • 1
  • Carles Arús
    • 1
    • 2
    • 3
  1. 1.Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici CsUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  2. 2.Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Cerdanyola del VallèsSpain
  3. 3.Institut de Biotecnologia i Biomedicina (IBB)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations