Pathology & Oncology Research

, Volume 21, Issue 3, pp 527–534 | Cite as

The Role of the Mediators of Inflammation in Cancer Development

  • José Veríssimo Fernandes
  • Ricardo Ney Oliveira Cobucci
  • Carlos André Nunes Jatobá
  • Thales Allyrio Araújo de Medeiros Fernandes
  • Judson Welber Veríssimo de Azevedo
  • Josélio Maria Galvão de Araújo


Epigenetic disorders such as point mutations in cellular tumor suppressor genes, DNA methylation and post-translational modifications are needed to transformation of normal cells into cancer cells. These events result in alterations in critical pathways responsible for maintaining the normal cellular homeostasis, triggering to an inflammatory response which can lead the development of cancer. The inflammatory response is a universal defense mechanism activated in response to an injury tissue, of any nature, that involves both innate and adaptive immune responses, through the collective action of a variety of soluble mediators. Many inflammatory signaling pathways are activated in several types of cancer, linking chronic inflammation to tumorigenesis process. Thus, Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, growth, invasion, and metastasis, affecting also the immune surveillance. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. A range of inflammation mediators, including cytokines, chemokines, free radicals, prostaglandins, growth and transcription factors, microRNAs, and enzymes as, cyclooxygenase and matrix metalloproteinase, collectively acts to create a favorable microenvironment for the development of tumors. In this review are presented the main mediators of the inflammatory response and discussed the likely mechanisms through which, they interact with each other to create a condition favorable to development of cancer.


Inflammation and cancer Inflammation mediators Mechanisms of tumorigenesis 



Arachidonic acid


Activator protein 1


Antigen-presenting cell


Cyclic AMP


Chemokine (C-C motif) ligand


Cluster of differentiation


Classical Hodgkin lymphoma


C-type lectin receptors




Colorectal cancer


Chemokine receptors


Damage-associated molecular patterns


Deoxyribonucleic acid


Extracellular matrix


Epidermal growth factor


Epidermal growth factor receptor


Epithelial-mesenchymal transition


Forkhead box P3


G protein-coupled


Human papillomavirus


Invasive cervical cancer






Major histocompatibility complex




Multiple myeloma


Enzymes matrix metalloproteinase matrix


Nuclear factor kappa-light-chain-enhancer of activated B cells


Natural killer cell


NOD-like receptors


Nitric oxide


Non-steroidal anti-inflammatory drugs


Tumor protein p53


Pathogen-associated molecular patterns




Pattern recognition receptors


Prostaglandin receptor


Terminal prostaglandin synthase enzyme


US National Library of Medicine


RIG-like receptors


Reactive oxygen species


Signal transducers and activators of transcription


T Cell Receptor


Transforming growth factor

Th cells

T helper cells


Toll-like receptors


Tumor necrosis factor


Regulatory T cells




Conflict of Interest

All authors state that there are no conflicts of interest to be declared. No financial support was requested or received in the production of this paper.


  1. 1.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265CrossRefPubMedGoogle Scholar
  2. 2.
    Ashley NT, Weil ZM, Nelson RJ (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406CrossRefGoogle Scholar
  3. 3.
    Bermejo-Martin JF, Martín-Loeches I, Bosinger S (2014) Inflammation and infection in critical care medicine. Mediat Inflamm 2014:456256. doi: 10.1155/2014/456256 Google Scholar
  4. 4.
    Eiró N, Vizoso FJ (2012) Inflammation and cancer. World J Gastrointest Surg 4(3):62–72CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Campbell LM, Maxwell PJ, Waugh DJ (2013) Rationale and means to target pro-inflammatory interleukin-8 (CXCL8) signaling in cancer. Pharmaceuticals 6(8):929–959CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Kaushal N, Kudva AK (2013) Oxidative stress and inflammation: the lesser of two evils in carcinogenesis. PostDoc J 1(2):89–101Google Scholar
  7. 7.
    Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629CrossRefPubMedGoogle Scholar
  8. 8.
    Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380CrossRefPubMedGoogle Scholar
  9. 9.
    Adefuye A, Sales K (2012) Regulation of inflammatory pathways in cancer and infectious disease of the cervix. Scientifica (Cairo) 2012:548150Google Scholar
  10. 10.
    Allavena P, Germano G, Marchesi F, Mantovani A (2011) Chemokines in cancer related inflammation. Exp Cell Res 317(5):664–673CrossRefPubMedGoogle Scholar
  11. 11.
    Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256(2):137–165CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. doi: 10.1186/1476-4598-12-86 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Liang Y, Zhou Y, Shen P (2004) NF-kappaB and its regulation on the immune system. Cell Mol Immunol 1(5):343–350PubMedGoogle Scholar
  14. 14.
    Wu LJ, Li HX, Luo XT et al (2014) STAT3 activation in tumor cell-free lymph nodes predicts a poor prognosis for gastric cancer. Int J Clin Exp Pathol 7(3):1140–1146PubMedCentralPubMedGoogle Scholar
  15. 15.
    Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185CrossRefPubMedGoogle Scholar
  16. 16.
    Gomis-Rüth FX (2009) Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 284(23):15353–15357CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Löffek S, Schilling O, Franzke CW (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208CrossRefPubMedGoogle Scholar
  18. 18.
    Walter L, Harper C, Gar P (2013) Role of matrix metalloproteinases in inflammation/colitis-associated colon cancer. Immuno-Gastroenterology 2(1):22–28CrossRefGoogle Scholar
  19. 19.
    Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L (2013) Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat Inflamm 2013:928315. doi: 10.1155/2013/928315 Google Scholar
  20. 20.
    Butler GS (2000) Overall CM (2013) Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol 63(1):123–148CrossRefGoogle Scholar
  21. 21.
    Said AH, Raufman JP, Xie G (2014) The role of matrix metalloproteinases in colorectal cancer. Cancers 6(1):366–375CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Zyada MM, Shamaa AA (2008) Is collagenase-3 (MMP-13) expression in chondrosarcoma of the jaws a true marker for tumor aggressiveness? Diagn Pathol 3:26. doi: 10.1186/1746-1596-3-26 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215(1):1–20CrossRefPubMedGoogle Scholar
  24. 24.
    Cathcart MC, O’Byrne KJ, Reynolds JV, O’Sullivan J, Pidgeon GP (2012) COX-derived prostanoid pathways in gastrointestinal cancer development and progression: novel targets for prevention and intervention. Biochim Biophys Acta 1825(1):49–63PubMedGoogle Scholar
  25. 25.
    Asting AG, Carén H, Andersson M, Lönnroth C, Lagerstedt K, Lundholm K (2011) COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. BMC Cancer 11:238. doi: 10.1186/1471-2407-11-238 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Wang D, Dubois RN (2010) The Role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29(6):781–788CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA (2012) Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. J Immunol 188(5):2445–2454CrossRefPubMedGoogle Scholar
  28. 28.
    Sales KJ, Katz AA, Howard B et al (2002) Cyclooxygenase-1 is up-regulated in cervical carcinomas: autocrine/paracrine regulation of cyclooxygenase-2, prostaglandin e receptors, and angiogenic factors by cyclooxygenase-1. Cancer Res 62:424–432PubMedCentralPubMedGoogle Scholar
  29. 29.
    zur Hausen H (2009) Papillomaviruses in the causation of human cancers - a brief historical account. Virology 384(2):260–265CrossRefPubMedGoogle Scholar
  30. 30.
    Ahmad J, Hasnain SE, Siddiqui MA, Ahamed M, Musarrat J, Al-Khedhairy AA (2013) MicroRNA in carcinogenesis & cancer diagnostics: a new paradigm. Indian J Med Res 137(4):680–694PubMedCentralPubMedGoogle Scholar
  31. 31.
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Ostermann E, Laventie JR, Pfeffer S, Bahram S, Sprauel PS, Georgel P (2013) MicroRNAs: Fine-turners of type-I interferon-dependent inflammatory responses. Curr Trends Immunol 14:35–44Google Scholar
  33. 33.
    Tili E, Michaille JJ, Croce CM (2013) MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 253(1):167–184CrossRefPubMedGoogle Scholar
  34. 34.
    Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12):3646–3653CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Yeung ML, Jeang KT (2011) MicroRNAs and cancer therapeutics. Pharm Res 28(12):3043–3049CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    O’Connell RM, Rao DS, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312CrossRefPubMedGoogle Scholar
  37. 37.
    Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143(3):550–563CrossRefPubMedGoogle Scholar
  38. 38.
    Schetter AJ, Okayama H, Harris CC (2012) The role of microRNAs in colorectal cancer. Cancer J 18:244–252CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Tang T, Wong HK, Gu W et al (2013) MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 129(1):199–208CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou Q, Haupt S, Kreuzer JT et al (2014) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis. doi: 10.1136/annrheumdis-2013-204377 Google Scholar
  41. 41.
    Iliopoulos D (2014) MicroRNA circuits regulate the cancer-inflammation link. Sci Signal 7(318):pe8. doi: 10.1126/scisignal.2005053 CrossRefPubMedGoogle Scholar
  42. 42.
    Josse C, Bouznad N, Geurts P et al (2014) Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 306(3):G229–G243CrossRefPubMedGoogle Scholar
  43. 43.
    Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J (2013) Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15(4):409–420CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Lou JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNF-α to TRAIL-mediated tumor regression. Cancer Cell 6(3):297–305CrossRefGoogle Scholar
  45. 45.
    Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230(3):241–248CrossRefPubMedGoogle Scholar
  46. 46.
    Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285CrossRefPubMedGoogle Scholar
  47. 47.
    Lebrun JJ (2012) The dual role of TGF-β in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol 2012:381428. doi: 10.5402/2012/ 381428 CrossRefGoogle Scholar
  48. 48.
    Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23(9):2078–2093CrossRefPubMedGoogle Scholar
  49. 49.
    Chen W, Konkel JE (2010) TGF-beta and ‘adaptive’ Foxp3(+) regulatory T cells. J Mol Cell Biol 2(1):30–36CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Visperas A, Do JS, Bulek K, Li X, Min B (2014) IL-27, targeting antigen-presenting cells, promotes Th17 differentiation and colitis in mice. Mucosal Immunol 7(3):625–633CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910CrossRefPubMedGoogle Scholar
  52. 52.
    Vicari AP, Trinchieri G (2004) Interleukin-10 in viral diseases and cancer: exiting the labyrinth? Immunol Rev 202:223–236CrossRefPubMedGoogle Scholar
  53. 53.
    Mocelin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78:1043–1051CrossRefGoogle Scholar
  54. 54.
    Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 135(1):64–73CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Pattison MJ, MacKenzie KF, Arthur JS (2012) Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J Immunol 189(6):2784–2792CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR (2011) Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res 51(2–3):170–82CrossRefPubMedGoogle Scholar
  57. 57.
    Cope A, Le Friec G, Cardone J, Kemper C (2011) The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol 32(6):278–286CrossRefPubMedGoogle Scholar
  58. 58.
    Stewart CA, Metheny H, Iida N et al (2013) Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 123(11):4859–4874CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Shigehara K, Shijubo N, Ohmichi M et al (2001) IL-12 and IL-18 are increased and stimulate IFN-γ production in sarcoid lungs. J Immunol 166(1):642–649CrossRefPubMedGoogle Scholar
  60. 60.
    Wong JL, Berk E, Edwards RP, Kalinski P (2013) IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 73(15):4653–4662CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Srivastava S, Salim N, Robertson MJ (2010) Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem 17(29):3353–3357CrossRefPubMedGoogle Scholar
  62. 62.
    Palma G, Barbieri A, Bimonte S, Palla M, Zappavigna S, Caraglia M, Ascierto PA, Ciliberto G, Arra C (2013) Interleukin 18: friend or foe in cancer. Biochim Biophys Acta 1836:296–303PubMedGoogle Scholar
  63. 63.
    Miossec P (2009) IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 11(5):625–630CrossRefPubMedGoogle Scholar
  64. 64.
    Xiang T, Long H, He L, Han X, Lin K, Liang Z, Zhuo W, Xie R, Zhu B (2013) Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer. Oncogene. doi: 10.1038/onc.2013.537 Google Scholar
  65. 65.
    Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HH (2013) Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology 63(2):225–233CrossRefPubMedGoogle Scholar
  66. 66.
    Chen Z, Ding J, Pang N, Du R, Meng W, Zhu Y, Zhang Y, Ma C, Ding Y (2013) The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol 8:61. doi: 10.1186/1746-1596-8-61 CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Ngiow SF, Teng MW, Smyth MJ (2013) Balance of interleukin-12 and −23 in cancer. Trends Immunol 34(11):548–555CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2015

Authors and Affiliations

  • José Veríssimo Fernandes
    • 1
    • 2
  • Ricardo Ney Oliveira Cobucci
    • 3
  • Carlos André Nunes Jatobá
    • 4
  • Thales Allyrio Araújo de Medeiros Fernandes
    • 5
  • Judson Welber Veríssimo de Azevedo
    • 6
  • Josélio Maria Galvão de Araújo
    • 1
    • 2
  1. 1.Post-Graduate Program in Biological SciencesFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Department of Microbiology and ParasitologyFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Maternidade Escola Januário CiccoFederal University of Rio Grande do NorteNatalBrazil
  4. 4.Department of PathologyFederal University of Rio Grande do NorteNatalBrazil
  5. 5.Department of Biomedical SciencesUniversity of Rio Grande do Norte StateMossoróBrazil
  6. 6.Hospital UniversitárioFederal University of Triângulo MineiroMina GeraisBrazil

Personalised recommendations