Advertisement

Pathology & Oncology Research

, Volume 21, Issue 3, pp 821–825 | Cite as

Altered MicroRNA Expression in Folliculotropic and Transformed Mycosis Fungoides

  • Dóra Marosvári
  • Vanda Téglási
  • Irén Csala
  • Márta Marschalkó
  • Csaba Bödör
  • Botond Timár
  • Judit Csomor
  • Judit Hársing
  • Lilla Reiniger
Research

Abstract

Mycosis fungoides (MF) is a common, indolent primary cutaneous T-cell lymphoma (CTCL), with rare, more aggressive variants, such as folliculotropic MF (FMF). A minority of the MF cases may undergo large cell transformation (T-MF) associated with poor prognosis. A selection of microRNAs (miRs) contribute to the pathogenesis and progression of classic MF, and may also be useful in differential diagnostics. However, the molecular background of FMF and the mechanisms involved in large cell transformation are obscure. We analyzed the expression of 11 miRs in 9 FMF and 7 T-MF cases. Three miRs, including miR-93-5p, miR-181a and miR-34a were significantly upregulated in both FMF and T-MF. FMF also showed overexpression of miR-155 and miR-223, while miR-181b and miR-326 were overexpressed in T-MF cases compared to controls. These results by identifying a number of differentially expressed microRNAs add further insight into the molecular pathogenesis of folliculotropic MF and large cell transformation of MF.

Keywords

MicroRNA Mycosis fungoides Folliculotropic mycosis fungoides Transformed mycosis fungoides 

Notes

Declaration of Interests

The authors declare no conflicts of interest.

References

  1. 1.
    Swerdlow SH, International Agency for Research on Cancer., World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008Google Scholar
  2. 2.
    Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105:3768–85CrossRefPubMedGoogle Scholar
  3. 3.
    Scarisbrick JJ, Kim YH, Whittaker SJ et al (2014) Prognostic factors, prognostic indices and staging in mycosis fungoides and sezary syndrome: where are we now? Br J Dermatol 170:1226–36CrossRefPubMedGoogle Scholar
  4. 4.
    Gerami P, Rosen S, Kuzel T, Boone SL, Guitart J (2008) Folliculotropic mycosis fungoides: an aggressive variant of cutaneous T-cell lymphoma. Arch Dermatol 144:738–46PubMedGoogle Scholar
  5. 5.
    Vergier B, de Muret A, Beylot-Barry M et al (2000) Transformation of mycosis fungoides: clinicopathological and prognostic features of 45 cases french study group of cutaneious lymphomas. Blood 95:2212–8PubMedGoogle Scholar
  6. 6.
    Benner MF, Jansen PM, Vermeer MH, Willemze R (2012) Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood 119:1643–9CrossRefPubMedGoogle Scholar
  7. 7.
    Wong HK, Mishra A, Hake T, Porcu P (2011) Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol 155:150–66CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    van Doorn R, Zoutman WH, Dijkman R et al (2005) Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 23:3886–96CrossRefPubMedGoogle Scholar
  9. 9.
    Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–8CrossRefPubMedGoogle Scholar
  10. 10.
    Calore F, Lovat F, Garofalo M (2013) Non-coding RNAs and cancer. Int J Mol Sci 14:17085–110CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    van Kester MS, Ballabio E, Benner MF et al (2011) miRNA expression profiling of mycosis fungoides. Mol Oncol 5:273–80CrossRefPubMedGoogle Scholar
  12. 12.
    Maj J, Jankowska-Konsur A, Sadakierska-Chudy A, Noga L, Reich A (2011) Altered microRNA expression in mycosis fungoides. Br J Dermatol 166:331–6CrossRefGoogle Scholar
  13. 13.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N et al (2011) Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118:5891–900CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Moyal L, Barzilai A, Gorovitz B et al (2013) miR-155 is involved in tumor progression of mycosis fungoides. Exp Dermatol 22:431–3CrossRefPubMedGoogle Scholar
  15. 15.
    Contassot E, Kerl K, Roques S et al (2008) Resistance to FasL and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in Sezary syndrome T-cells associated with impaired death receptor and FLICE-inhibitory protein expression. Blood 111:4780–7CrossRefPubMedGoogle Scholar
  16. 16.
    Dereure O, Levi E, Vonderheid EC, Kadin ME (2002) Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 118:949–56CrossRefPubMedGoogle Scholar
  17. 17.
    Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood GS (2009) Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol 129:1165–73CrossRefPubMedGoogle Scholar
  18. 18.
    Nielsen M, Kaestel CG, Eriksen KW et al (1999) Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 13:735–8CrossRefPubMedGoogle Scholar
  19. 19.
    Sommer VH, Clemmensen OJ, Nielsen O et al (2004) In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 18:1288–95CrossRefPubMedGoogle Scholar
  20. 20.
    Mao X, Orchard G, Lillington DM et al (2004) BCL2 and JUNB abnormalities in primary cutaneous lymphomas. Br J Dermatol 151:546–56CrossRefPubMedGoogle Scholar
  21. 21.
    Mao X, Orchard G, Mitchell TJ et al (2008) A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. J Cutan Pathol 35:899–910CrossRefPubMedGoogle Scholar
  22. 22.
    Mao X, Lillington D, Scarisbrick JJ et al (2002) Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in sezary syndrome and mycosis fungoides. Br J Dermatol 147:464–75CrossRefPubMedGoogle Scholar
  23. 23.
    Benner MF, Ballabio E, van Kester MS et al (2012) Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides. Exp Dermatol 21:632–4CrossRefPubMedGoogle Scholar
  24. 24.
    Prochazkova M, Chevret E, Mainhaguiet G et al (2007) Common chromosomal abnormalities in mycosis fungoides transformation. Genes, Chromosom Cancer 46:828–38CrossRefGoogle Scholar
  25. 25.
    Laharanne E, Chevret E, Idrissi Y et al (2010) CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol 23:547–58CrossRefPubMedGoogle Scholar
  26. 26.
    Manfe V, Biskup E, Rosbjerg A et al (2012) miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 7:e29541CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    McGirt LY, Adams CM, Baerenwald DA, Zwerner JP, Zic JA, Eischen CM (2013) miR-223 regulates cell growth and targets proto-oncogenes in mycosis fungoides/cutaneous T-cell lymphoma. J Investi Dermatol 134:1101–7CrossRefGoogle Scholar
  28. 28.
    Mi QS, Xu YP, Wang H, Qi RQ, Dong Z, Zhou L (2013) Deletion of microRNA miR-223 increases Langerhans cell cross-presentation. Int J Biochem Cell Biol 45:395–400CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sotillo E, Laver T, Mellert H et al (2011) Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 30:2587–94CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Rizzo M, Mariani L, Cavallini S, Simili M, Rainaldi G (2012) The over-expression of miR-34a fails to block DoHH2 lymphoma cell proliferation by reducing p53 via c-MYC down-regulation. Nucleic acid therapeutics 22:283–8PubMedGoogle Scholar
  31. 31.
    Kanavaros P, Ioannidou D, Tzardi M et al (1994) Mycosis fungoides: expression of C-myc p62 p53, bcl-2 and PCNA proteins and absence of association with Epstein-Barr virus. Pathol Res Pract 190:767–74CrossRefPubMedGoogle Scholar
  32. 32.
    Salgado R, Servitje O, Gallardo F et al (2010) Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides. J invest Dermatol 130:1126–35CrossRefPubMedGoogle Scholar
  33. 33.
    Fang L, Du WW, Yang W et al (2012) MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell cycle (Georgetown. Tex 11:4352–65Google Scholar
  34. 34.
    Xi Y, Formentini A, Chien M et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–21PubMedGoogle Scholar
  35. 35.
    Mansueto G, Forzati F, Ferraro A et al (2010) Identification of a New pathway for tumor progression: MicroRNA-181b Up-regulation and CBX7 down-regulation by HMGA1 protein. Genes & cancer 1:210–24CrossRefGoogle Scholar
  36. 36.
    Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123:150–63CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Fang L, Deng Z, Shatseva T et al (2010) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 30:806–21CrossRefPubMedGoogle Scholar
  38. 38.
    Williams A, Henao-Mejia J, Harman CC, Flavell RA (2013) miR-181 and metabolic regulation in the immune system. Cold Spring Harb Symp Quant Biol 78:223–30CrossRefPubMedGoogle Scholar
  39. 39.
    Hsu SD, Tseng YT, Shrestha S et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–85CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Scarisbrick JJ, Woolford AJ, Russell-Jones R, Whittaker SJ (2000) Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 95:2937–42PubMedGoogle Scholar
  41. 41.
    Katona TM, Smoller BR, Webb AL, Hattab EM, Khalil A, Hiatt KM (2013) Expression of PTEN in mycosis fungoides and correlation with loss of heterozygosity. Am J Dermatopathol 35:555–60CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2015

Authors and Affiliations

  • Dóra Marosvári
    • 1
  • Vanda Téglási
    • 1
  • Irén Csala
    • 2
    • 3
  • Márta Marschalkó
    • 4
  • Csaba Bödör
    • 1
  • Botond Timár
    • 1
  • Judit Csomor
    • 1
  • Judit Hársing
    • 4
  • Lilla Reiniger
    • 1
  1. 1.1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
  2. 2.Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
  3. 3.Department of Clinical and Theoretical Mental Health, Kútvölgyi Clinical CenterSemmelweis UniversityBudapestHungary
  4. 4.Department of Dermatovenerology and DermatooncologySemmelweis UniversityBudapestHungary

Personalised recommendations