Advertisement

Pathology & Oncology Research

, Volume 21, Issue 3, pp 759–764 | Cite as

CD44-SLC1A2 Fusion Transcripts in Primary Colorectal Cancer

  • Kazuya ShinmuraEmail author
  • Hisami Kato
  • Hisaki Igarashi
  • Yusuke Inoue
  • Satoki Nakamura
  • Chunping Du
  • Kiyotaka Kurachi
  • Toshio Nakamura
  • Hiroshi Ogawa
  • Masayuki Tanahashi
  • Hiroshi Niwa
  • Haruhiko Sugimura
Research

Abstract

A CD44-SLC1A2 fusion has recently been discovered in a subset of primary gastric cancers, and an APIP-SLC1A2 fusion has been described in a colon cancer cell line (SNU-C1); however, whether such SLC1A2 fusions occur in primary colorectal cancer (CRC) and whether such fusions are specific for gastrointestinal cancers remain uncertain. In the present study, we examined 90 primary CRCs and 112 primary non-small cell lung cancers (NSCLCs) for CD44-SLC1A2 and APIP-SLC1A2 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of both types of SLC1A2 fusion transcripts was not detected in any of the NSCLCs, the expression of CD44-SLC1A2, but not the APIP-SLC1A2 fusion transcript, was detected in one (1.1 %) CRC. The CD44-SLC1A2 fusion transcript was expressed in cancerous tissue but not in corresponding non-cancerous tissue, and the fusion occurred between exon 1 of CD44 and exon 2 of SLC1A2; it was expected that a slightly truncated but functional SLC1A2 protein would be produced under the CD44 promoter. A quantitative RT-PCR analysis revealed that SLC1A2 mRNA expression was upregulated in CRC containing SLC1A2 fusion transcripts, while it was downregulated in most other CRCs. The SLC1A2 fusion-positive carcinoma was located on the right-side of colon, was a mucinous adenocarcinoma, was immunohistochemically negative for MSH2 mismatch repair protein, and contained no APC or KRAS mutations. Together, these results suggest that the expression of SLC1A2 fusion transcripts is related to a subset of primary CRCs and may contribute to the elucidation of the characteristics of SLC1A2 fusion-positive CRCs in the future.

Keywords

CD44-SLC1A2 Fusion transcript Colorectal cancer 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Health, Labour and Welfare (21–1, 10103838), the Japan Society for the Promotion of Science (25460476), the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (221S0001), the Takeda Science Foundation, the Smoking Research Foundation, the National Cancer Center Research and Development Fund, and Center of Innovation Program of Japan Science and Technology Agency (MEXT).

References

  1. 1.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566CrossRefPubMedGoogle Scholar
  2. 2.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203CrossRefPubMedGoogle Scholar
  3. 3.
    Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T, Takamochi K, Suzuki K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61:163–169CrossRefPubMedGoogle Scholar
  4. 4.
    Matsuura S, Shinmura K, Kamo T, Igarashi H, Maruyama K, Tajima M, Ogawa H, Tanahashi M, Niwa H, Funai K, Kohno T, Suda T, Sugimura H (2013) CD74-ROS1 fusion transcripts in resected non-small cell lung carcinoma. Oncol Rep 30:1675–1680PubMedGoogle Scholar
  5. 5.
    Zheng J (2013) Oncogenic chromosomal translocations and human cancer. Oncol Rep 30:2011–2019PubMedGoogle Scholar
  6. 6.
    Bittner N, Ostoros G, Géczi L (2014) New treatment options for lung adenocarcinoma–in view of molecular background. Pathol Oncol Res 20:11–25CrossRefPubMedGoogle Scholar
  7. 7.
    Mitsudomi T, Suda K, Yatabe Y (2013) Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol 10:235–244CrossRefPubMedGoogle Scholar
  8. 8.
    Tao J, Deng NT, Ramnarayanan K, Huang B, Oh HK, Leong SH, Lim SS, Tan IB, Ooi CH, Wu J, Lee M, Zhang S, Rha SY, Chung HC, Smoot DT, Ashktorab H, Kon OL, Cacheux V, Yap C, Palanisamy N, Tan P (2011) CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med 3:77ra30CrossRefPubMedGoogle Scholar
  9. 9.
    Giacomini CP, Sun S, Varma S, Shain AH, Giacomini MM, Balagtas J, Sweeney RT, Lai E, Del Vecchio CA, Forster AD, Clarke N, Montgomery KD, Zhu S, Wong AJ, van de Rijn M, West RB, Pollack JR (2013) Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 9:e1003464CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, Matsuura S, Maeda M, Konno H, Matsuda T, Sugimura H (2011) Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol 225:414–423CrossRefPubMedGoogle Scholar
  11. 11.
    Tao H, Shinmura K, Yamada H, Maekawa M, Osawa S, Takayanagi Y, Okamoto K, Terai T, Mori H, Nakamura T, Sugimura H (2010) Identification of 5 novel germline APC mutations and characterization of clinical phenotypes in Japanese patients with classical and attenuated familial adenomatous polyposis. BMC Res Notes 3:305CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Fujisaki T, Tanaka Y, Fujii K, Mine S, Saito K, Yamada S, Yamashita U, Irimura T, Eto S (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res 59:4427–4434PubMedGoogle Scholar
  13. 13.
    Lugli A, Tzankov A, Zlobec I, Terracciano LM (2008) Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod Pathol 21:1403–1412CrossRefPubMedGoogle Scholar
  14. 14.
    Marcus VA, Madlensky L, Gryfe R, Kim H, So K, Millar A, Temple LK, Hsieh E, Hiruki T, Narod S, Bapat BV, Gallinger S, Redston M (1999) Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol 23:1248–1255CrossRefPubMedGoogle Scholar
  15. 15.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860CrossRefPubMedGoogle Scholar
  16. 16.
    Kelleher FC, McDermott R (2010) The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene. Eur J Cancer 46:2357–2368CrossRefPubMedGoogle Scholar
  17. 17.
    Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381CrossRefPubMedGoogle Scholar
  18. 18.
    Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Willard SS, Koochekpour S (2013) Glutamate signaling in benign and malignant disorders: current status, future perspectives, and therapeutic implications. Int J Biol Sci 9:728–742CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kakar S, Aksoy S, Burgart LJ, Smyrk TC (2004) Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol 17:696–700CrossRefPubMedGoogle Scholar
  21. 21.
    Terui H, Tachikawa T, Kakuta M, Nishimura Y, Yatsuoka T, Yamaguchi K, Yura K, Akagi K (2013) Molecular and clinical characteristics of MSH6 germline variants detected in colorectal cancer patients. Oncol Rep 30:2909–2916PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2015

Authors and Affiliations

  • Kazuya Shinmura
    • 1
    Email author
  • Hisami Kato
    • 1
  • Hisaki Igarashi
    • 1
  • Yusuke Inoue
    • 1
  • Satoki Nakamura
    • 1
  • Chunping Du
    • 1
  • Kiyotaka Kurachi
    • 2
  • Toshio Nakamura
    • 2
  • Hiroshi Ogawa
    • 3
  • Masayuki Tanahashi
    • 4
  • Hiroshi Niwa
    • 4
  • Haruhiko Sugimura
    • 1
  1. 1.Department of Tumor PathologyHamamatsu University School of MedicineHamamatsuJapan
  2. 2.Department of Surgery 2Hamamatsu University School of MedicineHamamatsuJapan
  3. 3.Division of PathologySeirei Mikatahara General HospitalHamamatsuJapan
  4. 4.Division of Thoracic Surgery, Respiratory Disease CenterSeirei Mikatahara General HospitalHamamatsuJapan

Personalised recommendations