Pathology & Oncology Research

, Volume 21, Issue 2, pp 405–411 | Cite as

The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process Involving ROS and JNK Cascade

  • Shakti Ranjan Satapathy
  • Purusottam Mohapatra
  • Dipon Das
  • Sumit Siddharth
  • Chanakya Nath KunduEmail author


Here, we report the p53 dependent mitochondria-mediated apoptotic mechanism of plant derived silver-nanoparticle (PD-AgNPs) in colorectal cancer cells (CRCs). PD-AgNPs was synthesized by reduction of AgNO3 with leaf extract of a medicinal plant periwinkle and characterized. Uptake of PD-AgNPs (ξ - 2.52 ± 4.31 mV) in HCT116 cells was 3 fold higher in comparison to synthetic AgNPs (ξ +2.293 ± 5.1 mV). A dose dependent increase in ROS production, activated JNK and decreased mitochondrial membrane potential (MMP) were noted in HCT116 but not in HCT116 p53 −/− cells after PD-AgNP exposure. PD-AgNP-mediated apoptosis in CRCs is a p53 dependent process involving ROS and JNK cascade.


Silver nanoparticle Periwinkle p53 MAPK MMP ROS Colon cancer 



Authors are greatly acknowledged Prof. Bert Vogelstein, Johns Hopkins, Baltimore, USA for providing HCT116 p53 −/− cell lines and also thanks to ICMR and DBT, Govt. of India for financial support.

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12253_2014_9835_MOESM1_ESM.pdf (402 kb)
ESM 1 (PDF 402 kb)


  1. 1.
    Satapathy SR, Mohapatra PM, Preet R, Das D, Sarkar B, Choudhuri T, Wyatt MD, Kundu CN (2013) Silver nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 8:1307–1322. doi: 10.2217/nnm.12.176 CrossRefPubMedGoogle Scholar
  2. 2.
    Tao A, Sinsermsuksaku P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4561–4597. doi: 10.1002/anie.200601277 CrossRefGoogle Scholar
  3. 3.
    AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi: 10.1021/nn800596w CrossRefPubMedGoogle Scholar
  4. 4.
    Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13951. doi: 10.1021/ja029267j CrossRefPubMedGoogle Scholar
  5. 5.
    Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71:226–229. doi: 10.1016/j.colsurfb.2009.02.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73. doi: 10.3109/07388551.2010.550568 CrossRefPubMedGoogle Scholar
  7. 7.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi: 10.1039/C1GC15386B CrossRefGoogle Scholar
  8. 8.
    Mukunthan K, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnol 4:71–79. doi: 10.1080/19430892.2012.676900 CrossRefGoogle Scholar
  9. 9.
    Kasthuri J, Veerapandian S, Rajendran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 68:55–60. doi: 10.1016/j,colsurfb.2008.09.021 CrossRefPubMedGoogle Scholar
  10. 10.
    Goyal P (2008) In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. Int J Green Pharm 2:176–181. doi: 10.4103/0973-8258.42739 CrossRefGoogle Scholar
  11. 11.
    Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn Res 2:195–201. doi: 10.4103/0974-8490.65523 CrossRefGoogle Scholar
  12. 12.
    Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580. doi: 10.1016/S2221-1691(12)60100-2 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Jacob SJ, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214. doi: 10.1016/j.colsurfb.2011.11.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–24. doi: 10.1021/es0625632 CrossRefPubMedGoogle Scholar
  15. 15.
    Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S (2012) Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Scientia Iranica F 19:943–47. doi: 10.1016/j.scient.2012.02.026 CrossRefGoogle Scholar
  16. 16.
    Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol Vitro 27:330–338. doi: 10.1016/j.tiv.2012.08.021 CrossRefGoogle Scholar
  17. 17.
    Kumar S, Sitasawad SL (2009) N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in h9c2 cells. Life Sci 84:328–36. doi: 10.1002/jctb.2023 CrossRefPubMedGoogle Scholar
  18. 18.
    Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161. doi: 10.4161/cbt.3.2.614 CrossRefPubMedGoogle Scholar
  19. 19.
    Saha MN, Jiang H, Yang Y, Zhu X, Wang X, Schimmer AD, Qiu L, Chang H (2012) Targeting p53 via JNK Pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7:e30215. doi: 10.1371/journal.pone.0030215 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Taylor CA, Zheng Q, Liu Z, Thompson JE (2013) Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to AdeIF5A1 in A549 lung cancer cells. Mol Cancer 12:35–45. doi: 10.1186/1476-4598-12-35 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011. doi: 10.1016/S0142-9612(02)00440-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607. doi: 10.1016/j.biomaterials.2007.07.029 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Lim HK, Asharani PV, Hande MP (2012) Enhanced genotoxicity of silver nanoparticles in DNA repair deficient Mammalian cells. Front Genet 3:104–116. doi: 10.3389/fgene.2012.00104 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966. doi: 10.1021/nl102172j CrossRefGoogle Scholar
  25. 25.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. doi: 10.1021/nl061025k CrossRefPubMedGoogle Scholar
  26. 26.
    Zhivotovsky B, Orrenius S, Brustugus OT, Doskeland SO (1998) Injected cytochrome c induces apoptosis. Nature 391:449–50. doi: 10.1038/35060 CrossRefPubMedGoogle Scholar
  27. 27.
    Johnson BW, Cepero E, Boise LH (2000) Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J Biol Chem 275:31546–31553. doi: 10.1074/jbc.M001363200 CrossRefPubMedGoogle Scholar
  28. 28.
    Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100. doi: 10.1016/j.toxlet.2010.12.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. doi: 10.1128/MMBR.00031-10 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS and JNK dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139. doi: 10.1016/j.toxlet.2008.04.015 CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2014

Authors and Affiliations

  • Shakti Ranjan Satapathy
    • 1
  • Purusottam Mohapatra
    • 1
  • Dipon Das
    • 1
  • Sumit Siddharth
    • 1
  • Chanakya Nath Kundu
    • 1
    Email author
  1. 1.Cancer Biology Division, KIIT School of BiotechnologyKIIT UniversityBhubaneswarIndia

Personalised recommendations