Advertisement

Pathology & Oncology Research

, Volume 21, Issue 2, pp 293–300 | Cite as

The Evaluation of WBP2NL-Related Genes Expression in Breast Cancer

  • Seyedmehdi Nourashrafeddin
  • Mahmoud Aarabi
  • Mohammad Hosein Modarressi
  • Marveh Rahmati
  • Mohammad NouriEmail author
Research

Abstract

Breast cancer is the most frequent cause of mortality in women all around the world; therefore, study on molecular aspects of breast cancer is necessary for finding new biomarkers. Recent studies have shown that WW Binding Protein 2 (WBP2) is an important protein for the oncogenic property of cancer. We have previously evaluated the WW Binding Protein 2 N-Terminal Like (WBP2NL) gene expression in cancerous cell line and breast tumor tissues, and reported changes in expression, which could increase tumorigenic cell growth. However, the molecular mechanisms of WBP2NL and its clinical relevance have not been investigated. In this study, the expression of WBP2NL-related genes in the invasive breast carcinoma and normal breast tissues was evaluated for the first time. Analysis of WBP2NL-related genes expression was performed with reverse transcription-PCR and real time-PCR detection method. The target genes studied were as follow: WW domain containing E3 ubiquitin protein ligase 1(WWP1), membrane associated guanylatekinase containing WW and PDZ domain-1 (MAGI1), neural precursor cell expressed developmentally down-regulated 4 (NEDD4), formin binding protein-4 (FNBP4), BCL2-associated athanogene-3 (BAG3), WW domain-containing oxidoreductase (WWOX), yes-associated protein-1 (YAP1), WW domain containing transcription regulator (WWTR1), member RAS oncogene family (RAB2A), and small G protein signaling modulator 3 (SGSM3). The expression of WWP1, BAG3, and WWTR1 was significantly increased in breast cancer. In contrast, the expression of WWOX, YAP1, RAB2A, and SGSM3 was significantly decreased. The MAGI1 and NEDD4 expression was increased, while the expression of FNBP4 was unchanged. These findings lead us to suggest that WBP2NL might play roles as an anti-apoptotic factor or co-activator to promote breast cancer cell survival and proliferation.

Keywords

Breast cancer WBP2NL-related genes qRT-PCR 

Notes

Acknowledgments

This research supported by a grant from Women’s Reproductive Health Research Center of Tabriz University of Medical Sciences, and we appreciate Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences for technical supports.

References

  1. 1.
    Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA, Condeelis JS (2012) Selective gene-expression profiling of migratory tumor cells in vivo predictsclinical outcome in breast cancer patients. Breast Cancer Res 14(5):R139CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. The Lancet Oncology 2(3):133–140CrossRefPubMedGoogle Scholar
  3. 3.
    Nishidate T, Katagiri T, Lin ML, Mano Y, Miki Y, Kasumi F, Yoshimoto M, Tsunoda T, Hirata K, Nakamura Y (2004) Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol 25(4):797–819PubMedGoogle Scholar
  4. 4.
    Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A 92(17):7819–23CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module—the WW domain. FEBS Lett 369:67–71CrossRefPubMedGoogle Scholar
  6. 6.
    Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278:33334–33341CrossRefPubMedGoogle Scholar
  7. 7.
    Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103:12405–12410CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Sudol M (1996) Structure and function of the WW domain. Prog Biophys Mol Biol 65:113–132CrossRefPubMedGoogle Scholar
  9. 9.
    Sudol M, Hunter T (2000) NeW wrinkles for an old domain. Cell 103(7):1001–4CrossRefPubMedGoogle Scholar
  10. 10.
    Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–7CrossRefPubMedGoogle Scholar
  11. 11.
    McDonald CB, McIntosh SK, Mikles DC, Bhat V, Deegan BJ, Seldeen KL, Saeed AM, Buffa L, Sudol M, Nawaz Z, Farooq A (2011) Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors. Biochemistry 50:9616–9627CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wang K, Degerny C, Xu M, Yang XJ (2009) YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem Cell Biol 87(1):77–91CrossRefPubMedGoogle Scholar
  13. 13.
    Chan SW, Lim C, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF, Hong W (2011) WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene 30:600–610CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    de Cristofaro T, Di Palma T, Ferraro A, Corrado A, Lucci V, Franco R, Fusco A, Zannini M (2011) TAZ/ WWTR1 is overexpressed in papillary thyroid carcinoma. Eur J Cancer 47:926–33CrossRefPubMedGoogle Scholar
  15. 15.
    15- Wang L, Chen Z, Wang Y, Chang D, Su L, Guo Y, Liu C (2013) WWTR1 promotes cell proliferation and inhibits apoptosis through cyclin A and CTGF regulation in non-small cell lung cancer. Tumour Biol. [Epub ahead of print]Google Scholar
  16. 16.
    Sudol M (2010) Newcomers to the WW domain-mediated network of the hippo tumor suppressor pathway. Genes Cancer 1(11):1115–8CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Zhang X, Milton CC, Poon CL, Hong W, Harvey KF (2011) Wbp2 cooperates with yorkie to drive tissue growth downstream of the Salvador-warts-hippo pathway. Cell Death Differ 18(8):1346–55CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Wu AT, Sutovsky P, Xu W, Vander Spoel AC, Platt FM, Oko R (2007) The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev Biol 312(2):471–83CrossRefPubMedGoogle Scholar
  19. 19.
    Sutovsky P, Manandhar G, Wu A, Oko R (2003) Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 61(4):362–78CrossRefPubMedGoogle Scholar
  20. 20.
    Wu AT, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS, Oko R (2007) PAWP, A sperm specific ww-domain binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 282(16):12164–75CrossRefPubMedGoogle Scholar
  21. 21.
    Oko R, Sutovsky P (2009) Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol 83(1–2):2–7CrossRefPubMedGoogle Scholar
  22. 22.
    Aarabi M, Qin Z, Xu W, Mewburn J, Oko R (2010) Sperm-borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev 77(3):249–56PubMedGoogle Scholar
  23. 23.
    Nourashrafeddin S, Aarabi M, Miryounesi M, Ebrahimzadeh-Vesal R, Zarghami N, Modarressi MH, Nouri M (2014) Expression analysis of PAWP during mouse embryonic stem cell-based spermatogenesis in vitro. Vitro Cell Dev Biol Anim 50(5):475–81CrossRefGoogle Scholar
  24. 24.
    Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731CrossRefPubMedGoogle Scholar
  25. 25.
    von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P (2007) STRING 7 - recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362CrossRefGoogle Scholar
  26. 26.
    Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O’Malley BW, Nawaz Z (2006) WW domain binding protein-2, an E6-assoiated protein interacting protein, acts as a coactivator of estrogen and progesterone recep- tors. Mol Endocrinol 20:2343–54CrossRefPubMedGoogle Scholar
  27. 27.
    Lim SK, Orhant-Prioux M, Toy W, Tan KY, Lim YP (2011) Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway. FASEB J 25(9):3004–18CrossRefPubMedGoogle Scholar
  28. 28.
    Buffa L, Saeed AM, Nawaz Z (2013) Molecular mechanism of WW-domain binding protein-2 coactivation function in estrogen receptor signaling. IUBMB Life 65(1):76–84CrossRefPubMedGoogle Scholar
  29. 29.
    Xie M, Zhang L, He CS, Hou JH, Lin SX, Hu ZH, Xu F, Zhao HY (2012) Prognostic significance of TAZ expression in resected non-small cell lung cancer. J Thorac Oncol 7(5):799–807CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X (2011) TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30(18):2181–6CrossRefPubMedGoogle Scholar
  31. 31.
    Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68(8):2592–8CrossRefPubMedGoogle Scholar
  32. 32.
    Chen C, Sun X, Guo P, Dong XY, Sethi P, Zhou W et al (2007) Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26:2386–2394CrossRefPubMedGoogle Scholar
  33. 33.
    Li Y, Zhou Z, Alimandi M, Chen C (2009) WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene 28(33):2948–58CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao D, Zhi X, Zhou Z, Chen C (2012) TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis. Carcinogenesis 33(1):59–67CrossRefPubMedGoogle Scholar
  35. 35.
    Rosati A, Graziano V, De Laurenzi V, Pascale M, Turco MC (2011) BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis 2:e141CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY, Xiong Q, Mo R, Li CY, Jeong JS, Jiang L, Blackshaw S, Bi LJ, Zhu H, Tao SC, Ge F (2013) BAG3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 12(10):2804–19CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ (2013) The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. J Biol Chem 288(10):6980–90CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Qu J, Lu W, Li B, Lu C, Wan X (2013) WWOX induces apoptosis and inhibits proliferation in cervical cancer and cell lines. Int J Mol Med 31(5):1139–47PubMedGoogle Scholar
  39. 39.
    Göthlin Eremo A, Wegman P, Stål O, Nordenskjöld B, Fornander T, Wingren S (2013) Wwox expression may predict benefit from adjuvant tamoxifen in randomized breast cancer patients. Oncol Rep 29(4):1467–74PubMedGoogle Scholar
  40. 40.
    Yang H, Sasaki T, Minoshima S, Shimizu N (2007) Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway. Genomics 90(2):249–60CrossRefPubMedGoogle Scholar
  41. 41.
    Chia WJ, Tang BL (2009) Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta 1795:110–6PubMedGoogle Scholar
  42. 42.
    Diep CH, Zucker KM, Hostetter G, Watanabe A, Hu C, Munoz RM, Von Hoff DD, Han H (2012) Down-regulation of yes associated protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS One 7(3):e32783CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, Pardo O, Crook T, Mein CA, Lemoine NR, Jones LJ, Basu S (2008) Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 15:1752–1759CrossRefPubMedGoogle Scholar
  44. 44.
    Ma S, Huang J, Xie Y, Yi N (2012) Identification of breast cancer prognosis markers using integrative sparse boosting. Methods Inf Med 51(2):152–61CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nature Rev Mol Cell Biol 10:513–525CrossRefGoogle Scholar
  46. 46.
    Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nature Rev Cancer 8(11):835–850CrossRefGoogle Scholar
  47. 47.
    Mountjoy JR, Xu W, McLeod D, Hyndman D, Oko R (2008) RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol Reprod 79(2):223–32CrossRefPubMedGoogle Scholar
  48. 48.
    Wang X, Trotman LC, TKoppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon Cardo C, Pandolfi PP, Jiang X (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128(1):129–39CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Amodio N, Scrima M, Palaia L, Salman AN, Quintiero A, Franco R, Botti G, Pirozzi P, Rocco G, De Rosa N, Viglietto G (2010) Oncogenic role of the E3 ubiquitin ligase NEDD4–1, a PTEN negative regulator, in non-small-cell lung carcinomas. Am J Pathol 177(5):2622–34CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O’Bryan JP (2012) Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS One 7(4):e36023CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Kondo Y, Koshimizu E, Megarbane A, Hamanoue H, Okada I, Nishiyama K, Kodera H, Miyatake S, Tsurusaki Y, Nakashima M, Doi H, Miyake N, Saitsu H, Matsumoto N (2013) Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies. Am J Med Genet A 161A(7):1543–6CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang G, Wang Z (2011) MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36(5):381–5PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2014

Authors and Affiliations

  • Seyedmehdi Nourashrafeddin
    • 1
    • 5
  • Mahmoud Aarabi
    • 2
  • Mohammad Hosein Modarressi
    • 3
  • Marveh Rahmati
    • 4
  • Mohammad Nouri
    • 1
    • 4
    Email author
  1. 1.Women’s Reproductive Health Research CenterTabriz University of Medical scienceTabrizIran
  2. 2.Department of Anatomy and Cell BiologyQueen’s UniversityKingstonCanada
  3. 3.Department of Medical Genetics, Faculty of MedicineTehran University of Medical SciencesTehranIran
  4. 4.Faculty of Medicine, Department of BiochemistryTabriz University of Medical scienceTabrizIran
  5. 5.Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Womens Research InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations