Advertisement

Pathology & Oncology Research

, Volume 20, Issue 4, pp 829–837 | Cite as

Decreased Expression of NPRL2 in Renal Cancer Cells is Associated with Unfavourable Pathological, Proliferation and Apoptotic Features

  • Yongyong Tang
  • Li Jiang
  • Wei Tang
Research

Abstract

The tumor suppressor gene nitrogen permease regulator-like 2(NPRL2) NPRL2 expressed obviously in many normal human tissues, but reduced in expression in many human tumors significantly. In this study, we detected the expression of NPRL2 in 78 clear cell renal cell carcinoma (ccRCC) by immunohistochemistry and correlated it with clinicopathological parameters. Meanwhile, the function of NPRL2 in human ccRCC was further explored after transfected recombinant expressing plasmids pEGFP-N1-NPRL2 into human renal cancer 786-0 cells. NPRL2 protein showed high expression in 67 of 78 cases of adjacent normal tissues (85.9 %), which was significantly higher than that in ccRCC tissues (23/78, 29.5 %). Clinic pathological analysis showed that NPRL2 expression was significantly correlated with histological grade (P = 0.044), TNM stage (P = 0.025) and lymph node metastasis (P = 0.028). MTT assay demonstrated that NPRL2 could obviously inhibit renal cancer cell proliferation. Flow cytometric analysis revealed that NPRL2 could induce renal cancer cells apoptosis and arrest the cell cycle in G0/G1 phase. In conclusion, NPRL2 is closely correlated to unfavourable pathological, proliferation and apoptotic features in ccRCC.

Keywords

NPRL2 Renal cancer carcinoma Transfection Proliferation Apoptosis 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30PubMedCrossRefGoogle Scholar
  2. 2.
    Campbell SC, Novick AC (2002) Renal tumors. In: Walsh PC, Retik AB, Vaughan ED, Wein AJ (eds) Kavoussi LR, Novick AC, Partin AW, Peters CA (ed.), Campbell’s urology. Elsevier, Philadelphia, pp 2672–2686Google Scholar
  3. 3.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  4. 4.
    Arsanious A, Bjarnason GA, Yousef GM (2009) From bench to bedside: current and future applications of molecular profiling in renal cell carcinoma. Mol Cancer 8(1):20PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jiang Z, Chu PG, Woda BA, Liu Q, Balaji KC, Rock KL, Wu CL (2008) Combination of quantitative IMP3 and tumor stage: a new system to predict metastasis for patients with localized renal cell carcinomas. Clin Cancer Res 14:5579–5584PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JW, Bae SH, Jeong JW et al (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36(1):1–12PubMedCrossRefGoogle Scholar
  7. 7.
    Hirota, Yan L, Tsunoda T et al (2006) Genome-wide gene expression profiles of clear cell renal cell carcinoma: identification of molecular targets for treatment of renal cell carcinoma. Int J Oncol 29(4):799–827PubMedGoogle Scholar
  8. 8.
    Lerman MI, Minna JD (2000) The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 60(21):6116–6133PubMedGoogle Scholar
  9. 9.
    Li J, Wang F, Haraldson et al (2004) Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res 64(18):6438–6443PubMedCrossRefGoogle Scholar
  10. 10.
    Sasatomi E, Finkelstein SD, Woods JD et al (2002) Comparison of accumulated allele loss between primary tumor and lymph node metastasis in stage II non-small cell lung carcinoma: implications for the timing of lymph node metastasis and prognostic value. Cancer Res 62(9):2681–2689PubMedGoogle Scholar
  11. 11.
    Senchenko VN, Anedchenko EA, Kondratieva TT et al (2010) Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 10:75PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Otani S, Takeda S, Yamada S, Sakakima Y et al (2009) The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor. J Surg Oncol 100(5):358–363PubMedCrossRefGoogle Scholar
  13. 13.
    Zabarovsky ER, Lerman MI, Minna JD (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21(45):6915–6935PubMedCrossRefGoogle Scholar
  14. 14.
    Yi Lo PH, Chung Leung AC, Xiong W et al (2006) Expression of candidate chromosome 3p21.3 tumor suppressor genes and down-regulation of BLU in some esophageal squamous cell carcinomas. Cancer Lett 234(2):184–192PubMedCrossRefGoogle Scholar
  15. 15.
    Chow LS, Lo KW, Kwong J et al (2004) RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 109(6):839–847PubMedCrossRefGoogle Scholar
  16. 16.
    Li J, Wang F, Protopopov A et al (2004) Inactivation of RASSF1C during in vivo tumor growth identifies it as a tumor suppressor gene. Oncogene 23(35):5941–5949PubMedCrossRefGoogle Scholar
  17. 17.
    Wang F, Grigorieva EV, Li J et al (2008) HYAL1 and HYAL2 inhibit tumour growth in vivo but not in vitro. PLoS One 3(8):e3031PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Senchenko et al (2010) Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 10:75PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jayachandran G, Ueda K, Wang B, Roth JA, Ji L (2010) NPRL2 sensitizes human non-small cell lung (NSCLC) cells to cisplatin treatment by regulating components in the DNA repair pathway. PLoS One 5(8):e11994PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Otani S, Takeda S, Yamada S et al (2009) The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor. J Surg Oncol 100:358–363PubMedCrossRefGoogle Scholar
  21. 21.
    Edge SB, Byrd DR, Compton CC et al (2009) AJCC cancer staging manual, 7th edn. Springer Verlag, New YorkGoogle Scholar
  22. 22.
    Eble JN, Sauter G, Epstein JI, Sesterhenn IA (eds) (2004) World Health Organization classification of tumors. Pathology and genetics of tumors of the urinary system and male genital organs. IARC Press, Lyon, pp 16–18Google Scholar
  23. 23.
    Xue et al (2012) Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell carcinoma. J Transl Med 10:200PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Otani S, Takeda S, Yamada S et al (2009) The tumor supperessor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor. J Surg Oncol 100(5):358–363PubMedCrossRefGoogle Scholar
  25. 25.
    Gao Y, Wang J, Fan G (2012–2013) NPRL2 is an independent prognostic factor of osteosarcoma. Cancer Biomark 12(1):31–36Google Scholar
  26. 26.
    Yogurtcu B, Hatemi I, Aydin I et al (2012) NPRL2 gene expression in the progression of colon tumors. Genet Mol Res 11(4):4810–4816PubMedGoogle Scholar
  27. 27.
    Ji L, Nishizaki M, Gao B et al (2002) Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 62(9):2715–2720PubMedPubMedCentralGoogle Scholar
  28. 28.
    Parasons SL, Watson SA, Brown PD et al (1997) Matrix metalloproteinases. Br J Surg 84(2):160–166CrossRefGoogle Scholar
  29. 29.
    Economidou F, Tzortzaki EG, Schiza S et al (2007) Microsatellite DNA analysis does not distinguish malignant from benign pleural effusions. Oncol Rep 18(6):1507–1512PubMedGoogle Scholar
  30. 30.
    Castagnaro A, Marangio E, Verduri A et al (2007) Microsatellite analysis of induced sputum DNA in patients with lung cancer in heavy smokers and in healthy subjects. Exp Lung Res 33(6):289–301PubMedCrossRefGoogle Scholar
  31. 31.
    Kurata A, Katayama R, Watanabe T et al (2008) TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Sci 99(9):1827–1834PubMedGoogle Scholar
  32. 32.
    Kim JH, Kim H, Lee KY et al (2006) Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet 15(7):1181–1186PubMedCrossRefGoogle Scholar
  33. 33.
    Wang YX, Zhu SC, Feng W, Li J, Su JW, Li R (2006) Effect on retardation of G2/M phase in esophageal carcinoma cells transfected with CHK1 and CHK2 shRNA after irradiation. Zhonghua Zhong Liu Za Zhi 28(8):572–577PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2014

Authors and Affiliations

  1. 1.Department of Urology, The First Affiliated HospitalChongqing Medical UniversityChongqingThe People’s Republic of China

Personalised recommendations