Advertisement

Pathology & Oncology Research

, Volume 20, Issue 2, pp 267–276 | Cite as

Quantification of Blood Dendritic Cells in Colorectal Cancer Patients During the Course of Disease

  • Giulia OrsiniEmail author
  • Annalisa Legitimo
  • Alessandra Failli
  • Paola Ferrari
  • Andrea Nicolini
  • Roberto Spisni
  • Paolo Miccoli
  • Rita Consolini
Research

Abstract

Colorectal cancer is a malignancy with poor prognosis that might be associated with defective immune function. The aim of the present study was to investigate circulating dendritic cells in colorectal cancer patients, in order to contribute to elucidate tumor-escape mechanisms and to point out a possible correlation with the clinical condition of the disease. Therefore, we enumerated ex vivo myeloid and plasmacytoid dendritic cells, through multicolor flow cytometry, in 26 colorectal patients and 33 healthy controls. Furthermore we performed several analyses at determined time points in order to define the immunological trend of cancer patients after surgery and other conventional treatments. At the pre-operative time point the absolute number of plasmacytoid dendritic cells in cancer patients was significantly reduced in comparison to controls, this result being mainly referred to stage III-IV patients. The number of myeloid dendritic cells did not show any significant difference compared to healthy controls; interestingly the expression of the tolerogenic antigen CD85k was significantly higher on cancer patients’ myeloid dendritic cells than controls’. At the following samplings, circulating dendritic cell absolute number did not show any difference compared to controls. Conclusively the impairment of the number of circulating dendritic cells may represent one of the tumor escape mechanisms occurring in colorectal cancer. These alterations seem to be correlated to cancer progression. Our work sheds light on one of dendritic cell-based tumor immune escape mechanisms. This knowledge may be useful to the development of more effective immunotherapeutic strategies.

Keywords

Circulating dendritic cells Colorectal cancer Immunosuppression Flow cytometry 

Notes

Acknowledgements

This work was supported by the University of Pisa.

We would like to thank all the patients and healthy volunteers for taking part in the study. We would also like to thank Ms. Maria Cristina Scarsini for blood samplings.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Galon J, Fridman WH, Pagès F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67:1883–1886PubMedCrossRefGoogle Scholar
  3. 3.
    Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G (2003) Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol 46:33–57PubMedCrossRefGoogle Scholar
  4. 4.
    Roxburgh CS, McMillan DC (2012) The role of the in situ local inflammatory response in predicting recurrence and survival in patients with primary operable colorectal cancer. Cancer Treat Rev 38:451–466PubMedCrossRefGoogle Scholar
  5. 5.
    Dadabayev AR, Sandel MH, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn C, Ensink NG, Tollenaar RA, van de Velde CJ, Kuppen PJ (2004) Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol Immunother 53:978–986PubMedCrossRefGoogle Scholar
  6. 6.
    Sandel MH, Dadabayev AR, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn CM, Ensink NG, Tollenaar RA, van de Velde CJ, Kuppen PJ (2005) Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 11:2576–2582PubMedCrossRefGoogle Scholar
  7. 7.
    Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5:62PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Schäkel K (2009) Dendritic cells–why can they help and hurt us. Exp Dermatol 18:264–273PubMedCrossRefGoogle Scholar
  9. 9.
    Mortellaro A, Wong SC, Fric J, Ricciardi-Castagnoli P (2010) The need to identify myeloid dendritic cell progenitors in human blood. Trends Immunol 31:18–23PubMedCrossRefGoogle Scholar
  10. 10.
    Reizis B (2010) Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol 22:206–211PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Palucka K, Ueno H, Zurawski G, Fay J, Banchereau J (2010) Building on dendritic cell subsets to improve cancer vaccines. Curr Opin Immunol 22:258–263PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lenahan C, Avigan D (2006) Dendritic cell defects in patients with cancer: mechanisms and significance. Breast Cancer Res 8:101PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Azpilicueta A, Berasain C, Perez-Gracia JL, Gonzalez A, Melero I (2007) Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 13:5822–5831PubMedGoogle Scholar
  15. 15.
    Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, Clerici M, Greco M, Villa ML (2003) Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Pinzon-Charry A, Maxwell T, López JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461PubMedCrossRefGoogle Scholar
  17. 17.
    Ormandy LA, Farber A, Cantz T, Petrykowska S, Wedemeyer H, Horning M, Lehner F, Manns MP, Korangy F, Greten TF (2006) Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 12:3275–3282PubMedGoogle Scholar
  18. 18.
    Sakakura K, Chikamatsu K, Takahashi K, Whiteside TL, Furuya N (2006) Maturation of circulating dendritic cells and imbalance of T-cell subsets in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 55:151–159PubMedCrossRefGoogle Scholar
  19. 19.
    McCarter MD, Baumgartner J, Escobar GA, Richter D, Lewis K, Robinson W, Wilson C, Palmer BE, Gonzalez R (2007) Immunosuppressive dendritic and regulatory T cells are upregulated in melanoma patients. Ann Surg Oncol 14:2854–2860PubMedCrossRefGoogle Scholar
  20. 20.
    Sciarra A, Lichtner M, Autran GA, Mastroianni C, Rossi R, Mengoni F, Cristini C, Gentilucci A, Vullo V, Di Silverio F (2007) Characterization of circulating blood dendritic cell subsets DC123+ (lymphoid) and DC11C+ (myeloid) in prostate adenocarcinoma patients. Prostate 67:1–7PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Yamao J, Kim S, Terakawa N, Takahashi K, Kwon AH (2012) Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J Surg Res 173:299–308PubMedCrossRefGoogle Scholar
  22. 22.
    Ambe K, Mori M, Enjoji M (1989) S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63:496–503PubMedCrossRefGoogle Scholar
  23. 23.
    Nakayama Y, Inoue Y, Minagawa N, Katsuki T, Nagashima N, Onitsuka K, Tsurudome Y, Sako T, Hirata K, Nagata N, Itoh H (2003) Relationships between S-100 protein-positive cells and clinicopathological factors in patients with colorectal cancer. Anticancer Res 23:4423–4426PubMedGoogle Scholar
  24. 24.
    Inoue Y, Nakayama Y, Minagawa N, Katsuki T, Nagashima N, Matsumoto K, Shibao K, Tsurudome Y, Hirata K, Nagata N, Itoh H (2005) Relationship between interleukin-12-expressing cells and antigen-presenting cells in patients with colorectal cancer. Anticancer Res 25:3541–3546PubMedGoogle Scholar
  25. 25.
    Yuan A, Steigen SE, Goll R, Vonen B, Husbekk A, Cui G, Florholmen J (2008) Dendritic cell infiltration pattern along the colorectal adenoma-carcinoma sequence. APMIS 116:445–456PubMedCrossRefGoogle Scholar
  26. 26.
    Gulubova MV, Ananiev JR, Vlaykova TI, Yovchev Y, Tsoneva V, Manolova IM (2012) Role of dendritic cells in progression and clinical outcome of colon cancer. Int J Colorectal Dis 27:159–169PubMedCrossRefGoogle Scholar
  27. 27.
    Huang A, Gilmour JW, Imami N, Amjadi P, Henderson DC, Allen-Mersh TG (2003) Increased serum transforming growth factor-beta1 in human colorectal cancer correlates with reduced circulating dendritic cells and increased colonic Langerhans cell infiltration. Clin Exp Immunol 134:270–278PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bellik L, Gerlini G, Parenti A, Ledda F, Pimpinelli N, Neri B, Pantalone D (2006) Role of conventional treatments on circulating and monocyte-derived dendritic cells in colorectal cancer. Clin Immunol 121:74–80PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt MA, Förtsch C, Schmidt M, Rau TT, Fietkau R, Distel LV (2012) Circulating regulatory T cells of cancer patients receiving radiochemotherapy may be useful to individualize cancer treatment. Radiother Oncol 104:131–138PubMedCrossRefGoogle Scholar
  30. 30.
    Orsini G, Legitimo A, Failli A, Massei F, Biver P, Consolini R (2012) Enumeration of human peripheral blood dendritic cells throughout the life. Int Immunol 24:347–356PubMedCrossRefGoogle Scholar
  31. 31.
    Cella M, Döhring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M (1997) A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 185:1743–1751PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Vlad G, Chang CC, Colovai AI, Berloco P, Cortesini R, Suciu-Foca N (2009) Immunoglobulin-like transcript 3: A crucial regulator of dendritic cell function. Hum Immunol 70:340–344PubMedCrossRefGoogle Scholar
  33. 33.
    Ju XS, Hacker C, Scherer B, Redecke V, Berger T, Schuler G, Wagner H, Lipford GB, Zenke M (2004) Immunoglobulin-like transcripts ILT2, ILT3 and ILT7 are expressed by human dendritic cells and down-regulated following activation. Gene 331:159–164PubMedCrossRefGoogle Scholar
  34. 34.
    Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L (2005) Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106:3490–3497PubMedCrossRefGoogle Scholar
  35. 35.
    Koos D, Josephs SF, Alexandrescu DT, Chan RC, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Campion R, Riordan NH, Carrier E (2010) Tumor vaccines in 2010: need for integration. Cell Immunol 263:138–147PubMedCrossRefGoogle Scholar
  36. 36.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Nencioni A, Grünebach F, Schmidt SM, Müller MR, Boy D, Patrone F, Ballestrero A, Brossart P (2008) The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 65:191–199PubMedCrossRefGoogle Scholar
  38. 38.
    Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM, Sheahan KD, O’Donoghue DP, Mulcahy HE, Ryan EJ, O’Sullivan JN (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One 6:e27944PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Takahashi K, Toyokawa H, Takai S, Satoi S, Yanagimoto H, Terakawa N, Araki H, Kwon AH, Kamiyama Y (2006) Surgical influence of pancreatectomy on the function and count of circulating dendritic cells in patients with pancreatic cancer. Cancer Immunol Immunother 55:775–784PubMedCrossRefGoogle Scholar
  40. 40.
    Lou Y, Liu C, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178:1534–1541PubMedCrossRefGoogle Scholar
  41. 41.
    Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, Giese T, Gires O, Endres S, Hartmann G (2003) Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487PubMedGoogle Scholar
  42. 42.
    Pérez-Cabezas B, Naranjo-Gómez M, Fernández MA, Grífols JR, Pujol-Borrell R, Borràs FE (2007) Reduced numbers of plasmacytoid dendritic cells in aged blood donors. Exp Gerontol 42:1033–1038PubMedCrossRefGoogle Scholar
  43. 43.
    Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, Fogli M, Ferri E, Della Cuna GR, Tura S, Baccarani M, Lemoli RM (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237PubMedCrossRefGoogle Scholar
  44. 44.
    Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR-/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547PubMedCrossRefGoogle Scholar
  45. 45.
    Hoffmann TK, Müller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL (2002) Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8:1787–1793PubMedGoogle Scholar
  46. 46.
    Yanagimoto H, Takai S, Satoi S, Toyokawa H, Takahashi K, Terakawa N, Kwon AH, Kamiyama Y (2005) Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clin Immunol 114:52–60PubMedCrossRefGoogle Scholar
  47. 47.
    Wilkinson R, Kassianos AJ, Swindle P, Hart DN, Radford KJ (2006) Numerical and functional assessment of blood dendritic cells in prostate cancer patients. Prostate 66:180–192PubMedCrossRefGoogle Scholar
  48. 48.
    Suciu-Foca N, Cortesini R (2007) Central role of ILT3 in the T suppressor cell cascade. Cell Immunol 248:59–67PubMedCrossRefGoogle Scholar
  49. 49.
    Lissoni P, Malugani F, Bonfanti A, Bucovec R, Secondino S, Brivio F, Ferrari-Bravo A, Ferrante R, Vigoré L, Rovelli F, Mandalà M, Viviani S, Fumagalli L, Gardani GS (2001) Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents 15:140–144PubMedGoogle Scholar
  50. 50.
    Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G, Grosse-Wilde H, Broelsch CE, Gerken G, Cicinnati VR (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269PubMedCrossRefGoogle Scholar
  51. 51.
    Bennaceur K, Chapman JA, Touraine JL, Portoukalian J (2009) Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 1795:16–24PubMedGoogle Scholar
  52. 52.
    Bindea G, Mlecnik B, Fridman WH, Galon J (2011) The prognostic impact of anti-cancer immune response: a novel classification of cancer patients. Semin Immunopathol 33:335–340PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2013

Authors and Affiliations

  • Giulia Orsini
    • 1
    Email author
  • Annalisa Legitimo
    • 1
  • Alessandra Failli
    • 2
  • Paola Ferrari
    • 1
  • Andrea Nicolini
    • 1
  • Roberto Spisni
    • 3
  • Paolo Miccoli
    • 3
  • Rita Consolini
    • 1
  1. 1.Department of Experimental and Clinical MedicineUniversity of PisaPisaItaly
  2. 2.Azienda Ospedaliero-Universitaria PisanaPisaItaly
  3. 3.Department of Molecular, Medical and Surgical Pathology and of the Critical AreaUniversity of PisaPisaItaly

Personalised recommendations