Skip to main content

Advertisement

Log in

XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) Single Nucleotide Polymorphisms in Cervical Cancer Risk

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Human Papillomavirus (HPV) is the main cause of cervical cancer and its precursor lesions. Transformation may be induced by several mechanisms, including oncogene activation and genome instability. Individual differences in DNA damage recognition and repair have been hypothesized to influence cervical cancer risk. The aim of this study was to evaluate whether the double strand break gene polymorphisms XRCC2 R188H G>A (rs3218536), XRCC3 T241M C>T (rs861539) and R243H G>A (rs77381814) are associated to cervical cancer in Argentine women. A case control study consisting of 322 samples (205 cases and 117 controls) was carried out. HPV DNA detection was performed by PCR and genotyping of positive samples by EIA (enzyme immunoassay). XRCC2 and 3 polymorphisms were determined by pyrosequencing. The HPV-adjusted odds ratio (OR) of XRCC2 188 GG/AG genotypes was OR = 2.4 (CI = 1.1–4.9, p = 0.02) for cervical cancer. In contrast, there was no increased risk for cervical cancer with XRCC3 241 TT/CC genotypes (OR = 0.48; CI = 0.2–1; p = 0.1) or XRCC3 241 CT/CC (OR = 0.87; CI = 0.52–1.4; p = 0.6). Regarding XRCC3 R243H, the G allele was almost fixed in the population studied. In conclusion, although the sample size was modest, the present data indicate a statistical association between cervical cancer and XRCC2 R188H polymorphism. Future studies are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wright TC (2009) Natural history of HPV infections. J Fam Pract 58:3–7

    Google Scholar 

  2. Magnusson P, Lichtenstein P, Gyllensten U (2000) Heritability of cervical tumours. Int J Cancer 88:698–701

    Article  PubMed  CAS  Google Scholar 

  3. Barbisan G, Pérez LO, Difranza L, Fernández CJ, Ciancio NE, Golijow CD (2011) XRCC1 Arg399Gln polymorphism and risk for cervical cancer development in Argentine women. Eur J Gynaecol Oncol 32:274–279

    PubMed  CAS  Google Scholar 

  4. Huang J, Ye F, Chen H, Lu W, Xie X (2007) The nonsynonymous single nucleotide polymorphisms of DNA repair gene XRCC1 and susceptibility to the development of cervical carcinoma and high-risk human papillomavirus infection. Int J Gynecol Cancer 17:668–675

    Article  PubMed  CAS  Google Scholar 

  5. Roszak A, Lianeri M, Jagodzinski PP (2011) Involvement of the XRCC1 Arg399Gln gene polymorphism in the development of cervical carcinoma. Int J Biol Markers 26(4):216–220

    PubMed  CAS  Google Scholar 

  6. Settheetham-Ishida W, Yuenyao P, Natphopsuk S, Settheetham D, Ishida T (2011) Genetic risk of DNA repair gene polymorphisms (XRCC1 and XRCC3) for high risk human papillomavirus negative cervical cancer in Northeast Thailand. Asian Pac J Cancer Prev 12:963–966

    PubMed  Google Scholar 

  7. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135

    Article  PubMed  CAS  Google Scholar 

  8. Udumudi A, Jaiswal M, Rajeswari N et al (1998) Risk assessment in cervical dysplasia patients by single cell gel electrophoresis assay: a study of DNA damage and repair. Mutat Res 30:195–205

    Google Scholar 

  9. Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Fernandez JL et al (2011) DNA damage in women with cervical neoplasia evaluated by DNA breakage detection-fluorescence in situ hybridization. Anal Quant Cytol Histol 33:175–181

    PubMed  Google Scholar 

  10. Duensing S, Munger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–7082

    PubMed  CAS  Google Scholar 

  11. Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E et al (2007) Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 26:2180–2191

    Article  PubMed  CAS  Google Scholar 

  12. Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M (2007) Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 26:2180–2191

    Article  PubMed  CAS  Google Scholar 

  13. Kadaja M, Silla T, Ustav E, Ustav M (2009) Papillomavirus DNA replication - frominitiation to genomic instability. Virology 384:360–368

    Article  PubMed  CAS  Google Scholar 

  14. Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M (2009) Mechanism of genomicinstability in cells infected with the high-risk human papillomaviruses. PLoSPathog 5:e1000397

    Google Scholar 

  15. Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F et al (2009) A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101:24–36

    Article  PubMed  CAS  Google Scholar 

  16. Rafii S, O’Regan P, Xinarianos G, Azmy I, Stephenson T, Reed M et al (2002) A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet 11:1433–1438

    Article  PubMed  CAS  Google Scholar 

  17. Loizidou MA, Michael T, Neuhausen SL, Newbold RF, Marcou Y, Kakouri E et al (2008) Genetic polymorphisms in the DNA repair genes XRCC1, XRCC2 and XRCC3 and risk of breast cancer in Cyprus. Breast Cancer Res Treat 112:575–579

    Article  PubMed  CAS  Google Scholar 

  18. Romanowicz-Makowska H, Smolarz B, Zadrozny M, Westfal B, Baszczynski J, Polac I, Sporny S (2011) Single nucleotide polymorphisms in the homologous recombination repair genes and breast cancer risk in polish women. Tohoku J Exp Med 224:201–208

    Article  PubMed  CAS  Google Scholar 

  19. Rafii S, Lindblom A, Reed M, Meuth M, Cox A (2003) A naturally occurring mutation in an ATP-binding domain of the recombination repair gene XRCC3 ablates its function without causing cancer susceptibility. Hum Mol Genet 12:915–923

    Article  PubMed  CAS  Google Scholar 

  20. De Ruyck K, Van Eijkeren M, Claes K, Morthier R, De Paepe A, Vral A et al (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 15:1140–1149

    Article  Google Scholar 

  21. He X, Ye F, Zhang J, Cheng Q, Shen J, Chen H (2008) Susceptibility of XRCC3, XPD, and XPG genetic variants to cervical carcinoma. Pathobiology 75:356–363

    Article  PubMed  CAS  Google Scholar 

  22. Wang SS, Bratti MC, Rodríguez AC, Herrero R, Burk RD, Porras C et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30

    Article  PubMed  CAS  Google Scholar 

  23. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  24. Ting Y, Manos MM (1990) Detection and typing of genital human Papillomavirus. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, San Diego, p 356

    Google Scholar 

  25. Evander M, Edlund K, Bodun E et al (1992) Comparison of a one-step and two-step polimerase chain reaction with degenerate general primers in a population-based study of human Papillomavirus infection in young Swedish women. J Clin Microbiol 30:987–992

    PubMed  CAS  Google Scholar 

  26. Söderlund-Strand A, Rymark P, Andersson P et al (2005) Comparison between the Hybrid Capture II Test and a PCR-Based Human Papillomavirus detection method for diagnosis and posttreatment follow-up of cervical intraepithelial neoplasia. J ClinMicrobiol 43:3260–3266

    Google Scholar 

  27. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM et al (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407

    Article  PubMed  CAS  Google Scholar 

  28. Jiao L, Hassan MM, Bondy ML, Wolff RA, Evans DB, Abbruzzese JL et al (2008) XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer. Am J Gastroenterol 103:360–367

    Article  PubMed  CAS  Google Scholar 

  29. Han J, Hankinson SE, Zhang SM, De Vivo I, Hunter DJ (2004) Interaction between genetic variations in DNA repair genes and plasma folate on breast cancer risk. Cancer Epidemiol Biomarkers Prev 13:520–524

    Article  PubMed  CAS  Google Scholar 

  30. Pearce CL, Near AM, Van Den Berg DJ, Ramus SJ, Gentry-Maharaj A, Menon U et al (2009) Validating genetic risk associations for ovarian cancer through the International Ovarian Cancer Association Consortium. Br J Cancer 100:412–20, Erratum in: Cunningham JC (2009) Br J Cancer 101:1805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Agency of Scientific and Technological Promotion (PICT 01–20149.) for their funding of this research.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Orlando Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, L.O., Crivaro, A., Barbisan, G. et al. XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) Single Nucleotide Polymorphisms in Cervical Cancer Risk. Pathol. Oncol. Res. 19, 553–558 (2013). https://doi.org/10.1007/s12253-013-9616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9616-2

Keywords

Navigation