Advertisement

Pathology & Oncology Research

, Volume 19, Issue 2, pp 149–154 | Cite as

Calreticulin and Cancer

  • Mohammadreza Zamanian
  • Abhi Veerakumarasivam
  • Syahril Abdullah
  • Rozita Rosli
Review

Abstract

Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.

Keywords

Calreticulin Endoplasmic reticulum Cancer Malignant progression Invasion Metastasis 

References

  1. 1.
    Michalak M et al (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344(2):281–292CrossRefPubMedGoogle Scholar
  2. 2.
    Goicoechea S et al (2002) The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem 277(40):37219–37228CrossRefPubMedGoogle Scholar
  3. 3.
    Michalak M et al (1992) Calreticulin. Biochem J 285(3):681–692PubMedGoogle Scholar
  4. 4.
    Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32(5–6):269–278CrossRefPubMedGoogle Scholar
  5. 5.
    Rojiani MV et al (1991) In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry 30:9859–9866CrossRefPubMedGoogle Scholar
  6. 6.
    Burns K et al (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367(6462):476–480CrossRefPubMedGoogle Scholar
  7. 7.
    Gelebart P, Opas M, Michalak M (2005) Calreticulin, a Ca2+−binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37(2):260–266CrossRefPubMedGoogle Scholar
  8. 8.
    Qiu Y, Michalak M (2009) Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 41(3):531–538CrossRefPubMedGoogle Scholar
  9. 9.
    Gold LI et al (2010) Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 24(3):665–683CrossRefPubMedGoogle Scholar
  10. 10.
    Nanney LB et al (2008) Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 173(3):610–630CrossRefPubMedGoogle Scholar
  11. 11.
    Gu VY et al (2008) Calreticulin in human pregnancy and pre-eclampsia. Mol Hum Reprod 14(5):309–315CrossRefPubMedGoogle Scholar
  12. 12.
    Pagh R et al (2008) The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases. FEBS J 275(3):515–526CrossRefPubMedGoogle Scholar
  13. 13.
    Yokoyama M, Hirata K-I (2005) New function of calreticulin: calreticulin-dependent mRNA destabilization. Circ Res 97(10):961–963CrossRefPubMedGoogle Scholar
  14. 14.
    McCauliffe DP et al (1992) The 5’-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 267(4):2557–2562PubMedGoogle Scholar
  15. 15.
    Waser M et al (1997) Regulation of calreticulin gene expression by calcium. J Cell Biol 138(3):547–557CrossRefPubMedGoogle Scholar
  16. 16.
    Nguyen TQ, Donald Capra J, Sontheimer RD (1996) Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol 33(4–5):379–386CrossRefPubMedGoogle Scholar
  17. 17.
    Michalak M et al (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417(3):651–666CrossRefPubMedGoogle Scholar
  18. 18.
    Qiu Y et al (2008) Regulation of the calreticulin gene by GATA6 and Evi-1 transcription factorsâ€. Biochemistry 47(12):3697–3704CrossRefPubMedGoogle Scholar
  19. 19.
    Guo L et al (2001) COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J Biol Chem 276:2797–2801CrossRefPubMedGoogle Scholar
  20. 20.
    Lynch J et al (2005) Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+−dependent signaling cascade. J Cell Biol 170:37–47CrossRefPubMedGoogle Scholar
  21. 21.
    Vig S et al (2012) C/EBPα mediates the transcriptional suppression of human calreticulin gene expression by TNFα. Int J Cell Biol 44(1):113–122CrossRefGoogle Scholar
  22. 22.
    Opas M et al (1991) Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol 149(1):160–171CrossRefPubMedGoogle Scholar
  23. 23.
    Yoon G-S et al (2000) Nuclear matrix of calreticulin in hepatocellular carcinoma. Cancer Res 60(4):1117–1120PubMedGoogle Scholar
  24. 24.
    Gold LI, et al. (2006) Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects. The journal of investigative dermatology. Symposium proceedings/the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research 11(1):57–65Google Scholar
  25. 25.
    Huang J-B et al (2004) Identification of channels promoting calcium spikes and waves in HT1080 tumor cells. Cancer Res 64(7):2482–2489CrossRefPubMedGoogle Scholar
  26. 26.
    Pallero MA et al (2008) Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 22(11):3968–3979CrossRefPubMedGoogle Scholar
  27. 27.
    Kageyama K et al (2002) Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem 277(22):19255–19264CrossRefPubMedGoogle Scholar
  28. 28.
    Okunaga T et al (2006) Calreticulin, a molecular chaperone in the endoplasmic reticulum, modulates radiosensitivity of human glioblastoma U251MG cells. Cancer Res 66(17):8662–8671CrossRefPubMedGoogle Scholar
  29. 29.
    Lim S, et al. (2008) Enhanced calreticulin expression promotes calcium-dependent apoptosis in postnatal cardiomyocytes. 25:390–396Google Scholar
  30. 30.
    Bini L et al (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18(15):2832–2841CrossRefPubMedGoogle Scholar
  31. 31.
    Chahed K et al (2005) Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: the two-dimensional electrophoresis and MALDI-TOF-mass spectrometry analyses. Int J Oncol 27(5):1425–1431PubMedGoogle Scholar
  32. 32.
    Kageyama S et al (2004) Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 50(5):857–866CrossRefPubMedGoogle Scholar
  33. 33.
    Ayodele A et al (2000) Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma. Anal Cell Pathol 21(1):1–9Google Scholar
  34. 34.
    Kim Y et al (2004) Glucoronic acid is a novel inducer of heat shock response. Mol Cell Biochem 259(1):23–33CrossRefPubMedGoogle Scholar
  35. 35.
    Hong S-H et al (2004) An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 64(15):5504–5510CrossRefPubMedGoogle Scholar
  36. 36.
    Du X-L et al (2007) Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med 85(8):863–875CrossRefPubMedGoogle Scholar
  37. 37.
    Nishimori T et al (2006) Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics 6(3):1011–1018CrossRefPubMedGoogle Scholar
  38. 38.
    Chen CN et al (2009) Association between color doppler vascularity index, angiogenesis-related molecules, and clinical outcomes in gastric cancer. J Surg Oncol 99(7):402–408CrossRefPubMedGoogle Scholar
  39. 39.
    Vougas K et al (2008) Two-dimensional electrophoresis and immunohistochemical study of calreticulin in colorectal adenocarcinoma and mirror biopsies. J Blacan Union Oncol 13(1):101–107Google Scholar
  40. 40.
    White TK, Zhu Q, Tanzer ML (1995) Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J Biol Chem 270(27):15926–15929CrossRefPubMedGoogle Scholar
  41. 41.
    Dissemond J et al (2004) Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma. Cancer Lett 203(2):225–231CrossRefPubMedGoogle Scholar
  42. 42.
    Helbling D et al (2005) CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 106(4):1369–1375CrossRefPubMedGoogle Scholar
  43. 43.
    Chen CN et al (2009) Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol 16(2):524–533CrossRefPubMedGoogle Scholar
  44. 44.
    Lwin Z-M, et al. (2010) Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod PatholGoogle Scholar
  45. 45.
    Eric A et al (2009) Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res 15(1):89–90CrossRefPubMedGoogle Scholar
  46. 46.
    Pabst T et al (2001) AML1-ETO downregulates the granulocytic differentiation factor C/EBP[alpha] in t(8;21) myeloid leukemia. Nat Med 7(4):444–451CrossRefPubMedGoogle Scholar
  47. 47.
    Lu Y-C et al (2011) Changes in tumor growth and metastatic capacities of j82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. Am J Pathol 179:1425–1433CrossRefPubMedGoogle Scholar
  48. 48.
    Hayashi E et al (2005) Proteomic profiling for cancer progression: differential display analysis for the expression of intracellular proteins between regressive and progressive cancer cell lines. Proteomics 5(4):1024–1032CrossRefPubMedGoogle Scholar
  49. 49.
    Zhu J (1996) Ultraviolet B irradiation and cytomegalovirus infection synergize to induce the cell surface expression of 52-kD/Ro antigen. Clin Exp Immunol 1(103):47–53CrossRefGoogle Scholar
  50. 50.
    Alur M et al (2009) Suppressive roles of calreticulin in prostate cancer growth and metastasis. Am J Pathol 175(2):882–890CrossRefPubMedGoogle Scholar
  51. 51.
    Porcellini S et al (2006) Regulation of peripheral T cell activation by calreticulin. J Exp Med 203(2):461–471CrossRefPubMedGoogle Scholar
  52. 52.
    Dupuis M et al (1993) The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177(1):1–7CrossRefPubMedGoogle Scholar
  53. 53.
    Andrin C et al (1998) Interaction between a Ca2+−binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules†. Biochemistry 37(29):10386–10394CrossRefPubMedGoogle Scholar
  54. 54.
    Sipione S et al (2005) Impaired cytolytic activity in calreticulin-deficient CTLs. J Immunol 174(6):3212–3219PubMedGoogle Scholar
  55. 55.
    Obeid M et al (2007) Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev 220:22–34CrossRefPubMedGoogle Scholar
  56. 56.
    Obeid M et al (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67(17):7941–7944CrossRefPubMedGoogle Scholar
  57. 57.
    Clarke C, Smyth MJ (2007) Calreticulin exposure increases cancer immunogenicity. Nat Biotechnol 25(2):192–193CrossRefPubMedGoogle Scholar
  58. 58.
    Zhou P et al (2008) Calreticulin expression in the clonal plasma cells of patients with systemic light-chain (AL-) amyloidosis is associated with response to high-dose melphalan. Blood 111(2):549–557CrossRefPubMedGoogle Scholar
  59. 59.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  60. 60.
    Hayashida Y et al (2006) Calreticulin represses E-cadherin gene expression in Madin-Darby Canine kidney cells via slug. J Biol Chem 281(43):32469–32484CrossRefPubMedGoogle Scholar
  61. 61.
    Fresno Vara JA et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30(2):193–204CrossRefPubMedGoogle Scholar
  62. 62.
    Xu Q et al (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552–5560CrossRefPubMedGoogle Scholar
  63. 63.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809CrossRefPubMedGoogle Scholar
  64. 64.
    Luo M-L et al (2006) Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66(24):11690–11699CrossRefPubMedGoogle Scholar
  65. 65.
    Weaver AM (2008) Cortactin in tumor invasiveness. Cancer Lett 265(2):157–166CrossRefPubMedGoogle Scholar
  66. 66.
    Du XL et al (2009) Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene 28(42):3714–3722CrossRefPubMedGoogle Scholar
  67. 67.
    Dedhar S et al (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462):480–483CrossRefPubMedGoogle Scholar
  68. 68.
    Green S et al (1988) The N-terminal DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7(10):3037–3044PubMedGoogle Scholar
  69. 69.
    Platet N et al (2000) Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms. Mol Endocrinol 14(7):999–1009CrossRefPubMedGoogle Scholar
  70. 70.
    Lusche DF, Wessels D, Soll DR (2009) The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. Cell Motil Cytoskeleton 66(8):567–587CrossRefPubMedGoogle Scholar
  71. 71.
    Fache S et al (2005) Calcium mobilization stimulates Dictyostelium discoideum shear-flow-induced cell motility. J Cell Sci 118(15):3445–3458CrossRefPubMedGoogle Scholar
  72. 72.
    Chantome A et al (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. Exp Cell Res 315(20):3620–3630CrossRefPubMedGoogle Scholar
  73. 73.
    Titushkin I, Cho M (2009) Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins. Biophys J 96(2):717–728CrossRefPubMedGoogle Scholar
  74. 74.
    Nakamura K et al (2001) Functional specialization of calreticulin domains. J Cell Biol 154(5):961–972CrossRefPubMedGoogle Scholar
  75. 75.
    Mesaeli N et al (1999) Calreticulin is essential for cardiac development. J Cell Biol 144(5):857–868CrossRefPubMedGoogle Scholar
  76. 76.
    Camacho P, Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82(5):765–771CrossRefPubMedGoogle Scholar
  77. 77.
    Arnaudeau S et al (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277(48):46696–46705CrossRefPubMedGoogle Scholar
  78. 78.
    Orr AW et al (2003) Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 116(14):2917–2927CrossRefPubMedGoogle Scholar
  79. 79.
    Li SS, Forslöw A, Sundqvist K-G (2005) Autocrine regulation of T cell motility by calreticulin-thrombospondin-1 interaction. J Immunol 174(2):654–661PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2013

Authors and Affiliations

  • Mohammadreza Zamanian
    • 1
    • 3
  • Abhi Veerakumarasivam
    • 1
    • 4
  • Syahril Abdullah
    • 1
    • 2
  • Rozita Rosli
    • 1
    • 2
  1. 1.Genetic Medicine Research Center, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.UPM-MAKNA Cancer Research Laboratory, Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Medical Genetics Group, Genetics Department, Reproductive Biomedicine CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
  4. 4.Perdana University Graduate School of Medicine, Perdana UniversitySerdangMalaysia

Personalised recommendations