Pathology & Oncology Research

, Volume 18, Issue 4, pp 1085–1089 | Cite as

Patterns of Histological Changes following Hepatic Electrolytic Ablation in an Ex-Vivo Perfused Model

  • Gianpiero Gravante
  • Seok Ling Ong
  • Kevin West
  • Angus McGregor
  • Guy J. Maddern
  • Matthew S. Metcalfe
  • David M. Lloyd
  • Ashley R. Dennison


Electrolytic ablation (EA) destroys the liver by releasing toxic radicles and producing modifications in the local pH without increasing the tissue temperature. We assessed the histological changes produced by EA using an ex-vivo perfused model. Five porcine livers were harvested, preserved in ice and reperfused for six hours in an extracorporeal circuit using autologous normothermic blood. One hour after reperfusion EA was performed and liver biopsies collected at the end of the experiments. The main necrotic zone consisted of coagulative necrosis, sinusoidal dilatation and haemorrhage with an unusual morphological pattern. The coagulative necrosis and haemorrhage affected mainly the peripheral area of the lobule with relative sparing of the area surrounding the centrilobular vein. Contrasting with this sinusoidal dilatation appeared to be more prominent in the centrilobular area. EA produces patterns of tissue destruction that have not been observed with the more commonly used thermal techniques. Further studies should obtain more information about the influence of adjacent biliary and vascular structures so that appropriate clinical trials can be designed.


Ex-vivo Liver Histology Pathology Electrolytic ablation 


  1. 1.
    Robertson GS, Wemyss-Holden SA, Dennison AR et al (1998) Experimental study of electrolysis-induced hepatic necrosis. Br J Surg 85(9):1212–1216PubMedCrossRefGoogle Scholar
  2. 2.
    Wemyss-Holden SA, de la M Hall P, Robertson GS et al (2000) The safety of electrolytically induced hepatic necrosis in a pig model. Aust N Z J Surg 70(8):607–612PubMedCrossRefGoogle Scholar
  3. 3.
    Baxter PS, Wemyss-Holden SA, Dennison AR et al (1998) Electrochemically induced hepatic necrosis: the next step forward in patients with unresectable liver tumours? Aust N Z J Surg 68(9):637–640PubMedCrossRefGoogle Scholar
  4. 4.
    Turler A, Schaefer H, Schaefer N et al (2000) Experimental low-level direct current therapy in liver metastases: influence of polarity and current dose. Bioelectromagnetics 21(5):395–401PubMedCrossRefGoogle Scholar
  5. 5.
    Wemyss-Holden SA, Dennison AR, Finch GJ et al (2002) Electrolytic ablation as an adjunct to liver resection: experimental studies of predictability and safety. Br J Surg 89(5):579–585PubMedCrossRefGoogle Scholar
  6. 6.
    Metcalfe MS, Mullin EJ, Texler M et al (2007) The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. Eur J Surg Oncol 33(5):662–667PubMedCrossRefGoogle Scholar
  7. 7.
    Fosh BG, Finch JG, Lea M et al (2002) Use of electrolysis as an adjunct to liver resection. Br J Surg 89(8):999–1002PubMedCrossRefGoogle Scholar
  8. 8.
    Goldberg SN, Gazelle GS, Compton CC et al (2000) Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 88(11):2452–2463PubMedCrossRefGoogle Scholar
  9. 9.
    Tamaki K, Shimizu I, Oshio A et al (2004) Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model. Liver Int 24(6):696–701PubMedCrossRefGoogle Scholar
  10. 10.
    Gravante G, Ong SL, Metcalfe MS, et al. The effects of radiofrequency ablation on the hepatic parenchyma: Histological bases for tumor recurrences. Surgical oncology Feb 26Google Scholar
  11. 11.
    Gravante G, Ong SL, Metcalfe MS et al (2008) Hepatic microwave ablation: a review of the histological changes following thermal damage. Liver Int 28(7):911–921PubMedCrossRefGoogle Scholar
  12. 12.
    Vanagas T, Gulbinas A, Sadauskiene I et al (2009) Apoptosis is activated in an early period after radiofrequency ablation of liver tissue. Hepato-Gastroenterology 56(93):1095–1099PubMedGoogle Scholar
  13. 13.
    Nijkamp MW, van der Bilt JD, de Bruijn MT et al (2009) Accelerated perinecrotic outgrowth of colorectal liver metastases following radiofrequency ablation is a hypoxia-driven phenomenon. Ann Surg 249(5):814–823PubMedCrossRefGoogle Scholar
  14. 14.
    Gravante G, Ong SL, Metcalfe MS et al (2009) Experimental application of electrolysis in the treatment of liver and pancreatic tumours: Principles, preclinical and clinical observations and future perspectives. Surgical oncology 2009 Dec 31Google Scholar
  15. 15.
    Gravante G, Ong SL, Metcalfe MS et al (2008) Effects of hypoxia due to isovolemic hemodilution on an ex vivo normothermic perfused liver model. J Surg Res 2008 Nov 6: [Epub ahead of print]Google Scholar
  16. 16.
    Gravante G, Ong SL, Metcalfe MS et al. Changes in acid–base balance during electrolytic ablation in an ex vivo perfused liver model. Am J Surg May 5Google Scholar
  17. 17.
    Gravante G, Ong SL, Metcalfe MS et al (2009) Cytokine response to ischemia/reperfusion injury in an ex vivo perfused porcine liver model. Transplant Proc 41(4):1107–1112PubMedCrossRefGoogle Scholar
  18. 18.
    von Euler H, Olsson JM, Hultenby K et al (2003) Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver. Bioelectrochem (Amsterdam, Netherlands) 59(1–2):89–98CrossRefGoogle Scholar
  19. 19.
    Hinz S, Egberts JH, Pauser U et al (2008) Electrolytic ablation is as effective as radiofrequency ablation in the treatment of artificial liver metastases in a pig model. J Surg Oncol 98(2):135–138PubMedCrossRefGoogle Scholar
  20. 20.
    Berry DP, Garcea G, Vanderzon P et al (2004) Augmenting the ablative effect of liver electrolysis: using two electrodes and the pringle maneuver. J Invest Surg 17(2):105–112PubMedCrossRefGoogle Scholar
  21. 21.
    von Euler H, Nilsson E, Olsson JM et al (2001) Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours. Bioelectrochem (Amsterdam, Netherlands) 54(2):117–124CrossRefGoogle Scholar
  22. 22.
    Berendson J, Simonsson D (1994) Electrochemical aspects of treatment of tissue with direct current. Eur J Surg Suppl 574:111–115PubMedGoogle Scholar
  23. 23.
    Li K, Xin Y, Gu Y et al (1997) Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment. Bioelectromagnetics 18(1):2–7PubMedCrossRefGoogle Scholar
  24. 24.
    Bhardwaj N, Dormer J, Ahmad F et al. Microwave ablation of the liver: a description of lesion evolution over time and an investigation of the heat sink effect. Pathology Dec;43(7):725–731Google Scholar

Copyright information

© Arányi Lajos Foundation 2012

Authors and Affiliations

  • Gianpiero Gravante
    • 1
    • 4
  • Seok Ling Ong
    • 1
  • Kevin West
    • 2
  • Angus McGregor
    • 2
  • Guy J. Maddern
    • 3
  • Matthew S. Metcalfe
    • 1
  • David M. Lloyd
    • 1
  • Ashley R. Dennison
    • 1
  1. 1.Department of Hepatobiliary and Pancreatic SurgeryLeicester General HospitalLeicesterUK
  2. 2.Department of HistopathologyUniversity Hospitals of Leicester NHS TrustLeicesterUK
  3. 3.Department of Surgery, University of AdelaideThe Queen Elizabeth HospitalWoodville SouthAustralia
  4. 4.Department of HPB SurgeryLeicester General HospitalLeicesterUK

Personalised recommendations