Pathology & Oncology Research

, Volume 18, Issue 4, pp 771–781 | Cite as

Oncolytic Viruses in the Treatment of Cancer: A Review of Current Strategies

  • Md. Zeyaullah
  • Mohan Patro
  • Irfan Ahmad
  • Kawthar Ibraheem
  • P. Sultan
  • M. Nehal
  • Arif Ali


Oncolytic viruses are live, replication-competent viruses that replicate selectively in tumor cells leading to the destruction of the tumor cells. Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are promising a new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies. Virotherapy is not a new concept, but recent technical advances in the genetic modification of oncolytic viruses have improved their tumor specificity, leading to the development of new weapons for the war against cancer. Clinical trials with oncolytic viruses demonstrate the safety and feasibility of an effective virotherapeutic approach. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored. Systemic administrations of oncolytic viruses will successfully extend novel treatment against a range of tumors. Combination therapy has shown some encouraging antitumor responses by eliciting strong immunity against established cancer.


Oncolytic viruses Tumor cells Human cancer Virotherapeutics Combination therapy 


  1. 1.
    Biederer C, Ries S, Brandts CH et al (2002) Replication-selective viruses for cancer therapy. J Mol Med 80:163–175PubMedCrossRefGoogle Scholar
  2. 2.
    Chiocca AE (2002) Oncolytic viruses. Nat Rev Cancer 2:938–950PubMedCrossRefGoogle Scholar
  3. 3.
    Everts B, Van der Poel HG (2005) Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 12(2):141–161PubMedCrossRefGoogle Scholar
  4. 4.
    Guo ZS, Naik A, O’Malley ME et al (2005) The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res 65:9991–9998PubMedCrossRefGoogle Scholar
  5. 5.
    Guo ZS, Thorne SH, Bartlett DL (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785:217–231PubMedGoogle Scholar
  6. 6.
    Thorne SH, Hermiston T, Kirn D (2005) Oncolytic virotherapy: approaches to tumor targeting and enhancing antitumor effects. Semin Oncol 32:537–548PubMedCrossRefGoogle Scholar
  7. 7.
    Kirn D, Martuza RL, Zwiebel J (2001) Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med 7:781–787PubMedCrossRefGoogle Scholar
  8. 8.
    Harrington KJ, Vile RG, Melcher A et al (2010) Clinical trials with oncolytic reovirus: moving beyond phase I into combinations with standard therapeutics. Cytokine Growth Factor Rev 21:91–98PubMedCrossRefGoogle Scholar
  9. 9.
    Van Den Wollenberg DJ, Van Den Hengel SK, Dautzenberg IJ et al (2009) Modification of mammalian reoviruses for use as oncolytic agents. Expert Opin Biol Ther 9:1509–1520CrossRefGoogle Scholar
  10. 10.
    Schirrmacher V, Fournier P (2009) Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods in molecular biology 542:565–605PubMedCrossRefGoogle Scholar
  11. 11.
    Barber GN (2005) VSV-tumor selective replication and protein translation. Oncogene 24:7710–7719PubMedCrossRefGoogle Scholar
  12. 12.
    Kirn DH, Thorne SH (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9:64–71PubMedCrossRefGoogle Scholar
  13. 13.
    Msaouel P, Iankov ID, Dispenzieri A et al (2011) Attenuated Oncolytic Measles Virus Strains as Cancer Therapeutics. Curr Pharm Biotechnol.Google Scholar
  14. 14.
    Toth K, Wold WS (2010) Increasing the efficacy of oncolytic adenovirus vectors. Viruses 2:1844–1866PubMedCrossRefGoogle Scholar
  15. 15.
    Kaur B, Chiocca EA, Cripe TP (2011) Oncolytic HSV-1 Virotherapy: Clinical Experience and Opportunities for Progress. Curr Pharm Biotechnol.Google Scholar
  16. 16.
    Goetz C, Gromeier M (2010) Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 21:197–203PubMedCrossRefGoogle Scholar
  17. 17.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  18. 18.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  19. 19.
    Kirn DH, Wang Y, Le Boeuf F et al (2007) Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med 4:e353PubMedCrossRefGoogle Scholar
  20. 20.
    McCart JA, Ward JM, Lee J et al (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 61:8751–8757PubMedGoogle Scholar
  21. 21.
    DeWeese TL, van der Poel H, Li S et al (2001) A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 61:7464–7472PubMedGoogle Scholar
  22. 22.
    Li Y, Yu DC, Chen Y et al (2001) A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 61:6428–6436PubMedGoogle Scholar
  23. 23.
    Yu DC, Chen Y, Dilley J et al (2001) Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 61:517–525PubMedGoogle Scholar
  24. 24.
    Rojas JJ, Guedan S, Searle PF et al (2010) Minimal RB-responsive E1A promoter modification to attain potency, selectivity, and transgene-arming capacity in oncolytic adenoviruses. Mol Ther 18:1960–1971PubMedCrossRefGoogle Scholar
  25. 25.
    Roelvink PW, Mi Lee G, Einfeld DA et al (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571PubMedCrossRefGoogle Scholar
  26. 26.
    Douglas JT, Rogers BE, Rosenfeld ME et al (1996) Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 14:1574–1578PubMedCrossRefGoogle Scholar
  27. 27.
    Peng KW, Donovan KA, Schneider U et al (2003) Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 101:2557–2562PubMedCrossRefGoogle Scholar
  28. 28.
    Thorne SH (2011) Immunotherapeutic potential of oncolytic vaccinia virus. Immunol Res 50:286–293PubMedCrossRefGoogle Scholar
  29. 29.
    Breitbach CJ, Paterson JM, Lemay CG et al (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 15:1686–1693PubMedCrossRefGoogle Scholar
  30. 30.
    Breitbach CJ, Reid T, Burke J et al (2010) Navigating the clinical development landscape for oncolytic viruses and other cancer therapeutics: No shortcuts on the road to approval. Cytokine Growth Factor Rev 21:85–89PubMedCrossRefGoogle Scholar
  31. 31.
    Breitbach CJ, Thorne SH, Bell JC et al (2011) Targeted and Armed Oncolytic Poxviruses for Cancer: The Lead Example of JX-594. Curr Pharm Biotechnol.Google Scholar
  32. 32.
    Liu TC, Hwang T, Park BH et al (2008) The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 16:1637–1642PubMedCrossRefGoogle Scholar
  33. 33.
    Hermiston T (2002) Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses. Curr Opin Mol Ther 4:334–342PubMedGoogle Scholar
  34. 34.
    Hermiston TW, Kuhn I (2002) Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 9:1022–1035PubMedCrossRefGoogle Scholar
  35. 35.
    Bell J (2010) Oncolytic viruses: an approved product on the horizon? Mol Ther 18:233–234PubMedCrossRefGoogle Scholar
  36. 36.
    Cattaneo R, Miest T, Shashkova EV et al (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 6:529–540PubMedCrossRefGoogle Scholar
  37. 37.
    John LB, Howland LJ, Flynn JK et al (2012) Oncolytic virus and anti–4-1BB combination therapy elicits strong antitumor immunity against established cancer. Cancer Res 72(7):1651–1660PubMedCrossRefGoogle Scholar
  38. 38.
    Seton-Rogers S (2012) Immunotherapy: combinations that work. Nat Rev Cancer 12:231PubMedCrossRefGoogle Scholar
  39. 39.
    Vanneman M, Dranoff G (2011) Combining immunotherapy and targeted therapies in cancer treatment. Nature Rev Cancer 12:237–251CrossRefGoogle Scholar
  40. 40.
    Sinkovics JG, Horvath JC (2008) Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz) 56(Suppl 1):3s–59sGoogle Scholar
  41. 41.
    Russell SJ (2002) RNA viruses as virotherapy agents. Cancer Gene Ther 9:961–966PubMedCrossRefGoogle Scholar
  42. 42.
    Norman KL, Lee PW (2000) Reovirus as a novel oncolytic agent. J Clin Invest 105:1035–1038PubMedCrossRefGoogle Scholar
  43. 43.
    Strong JE, Coffey MC, Tang D et al (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17:3351–3362PubMedCrossRefGoogle Scholar
  44. 44.
    Cornelis JJ, Salomé N, Dinsart C et al (2004) Vectors based on autonomous parvoviruses: novel tools to treat cancer? J Gene Med 6:S193–S202PubMedCrossRefGoogle Scholar
  45. 45.
    Rommelaere J, Cornelis JJ (1991) Antineoplastic activity of parvoviruses. J Virol Methods 33:233–251PubMedCrossRefGoogle Scholar
  46. 46.
    Farassati F, Yang A, Lee PWK (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3:745–750PubMedCrossRefGoogle Scholar
  47. 47.
    He B, Gross M, Roizman B (1997) The 134.5 protein of herpes simplex virus complexes with protein phosphatase 1 to dephosphorylate the subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94:843–848PubMedCrossRefGoogle Scholar
  48. 48.
    Varghese S, Rabkin SD (2002) Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 9:967–978PubMedCrossRefGoogle Scholar
  49. 49.
    Reid T, Galanis E, Abbruzzese J et al (2001) Intra-arterial administration of a replicationselective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a Phase I trial. Gene Ther 8:1618–1626PubMedCrossRefGoogle Scholar
  50. 50.
    Reid T, Warren R, Kirn D (2002) Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 9:979–986PubMedCrossRefGoogle Scholar
  51. 51.
    Reid T, Galanis E, Abbruzzese J et al (2002) Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): Phase II viral, immunologic, and clinical endpoints. Cancer Res 62:6070–6079PubMedGoogle Scholar
  52. 52.
    Zeh HJ, Bartlett DL (2002) Development of a replicationselective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther 9:1001–1012PubMedCrossRefGoogle Scholar
  53. 53.
    Gromeier M, Alexander L, Wimmer E (1996) Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA 93:2370–2375PubMedCrossRefGoogle Scholar
  54. 54.
    Gromeier M, Lachmann S, Rosenfeld MR et al (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 97:6803–6808PubMedCrossRefGoogle Scholar
  55. 55.
    Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1:938–943PubMedCrossRefGoogle Scholar
  56. 56.
    Dobbelstein M (2004) Replicating adenoviruses in cancer therapy. Curr Top Microbiol Immunol 273:291–334PubMedGoogle Scholar
  57. 57.
    Flint J, Shenk T (1997) Viral transactivating proteins. Annu Rev Genet 31:177–212PubMedCrossRefGoogle Scholar
  58. 58.
    de Stanchina E, McCurrach ME, Zindy F et al (1998) E1A signaling to p53 involves the p19 (ARF) tumor suppressor. Genes Dev 12:2434–2442PubMedCrossRefGoogle Scholar
  59. 59.
    Kao CC, Yew PR, Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55 K proteins. Virology 179:806–814PubMedCrossRefGoogle Scholar
  60. 60.
    Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357:82–85PubMedCrossRefGoogle Scholar
  61. 61.
    Yew PR, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8:190–202PubMedCrossRefGoogle Scholar
  62. 62.
    Bischoff JR, Kirn DH, Williams A et al (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376PubMedCrossRefGoogle Scholar
  63. 63.
    McCormick F (2000) ONYX-015 selectivity and the p14ARF pathway. Oncogene 19:6670–6672PubMedCrossRefGoogle Scholar
  64. 64.
    Petit T, Davidson KK, Cerna C et al (2002) Efficient induction of apoptosis by ONYX-015 adenovirus in human colon cancer cell lines regardless of p53 status. Anticancer Drugs 13:47–50PubMedCrossRefGoogle Scholar
  65. 65.
    Ries SJ, Brandts CH, Chung AS et al (2000) Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat Med 6:1128–1133PubMedCrossRefGoogle Scholar
  66. 66.
    Ries S, Korn WM (2002) ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 86:5–11PubMedCrossRefGoogle Scholar
  67. 67.
    Johnson L, Shen A, Boyle L et al (2002) Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 1:325–337PubMedCrossRefGoogle Scholar
  68. 68.
    Fueyo J, Gomez-Manzano C, Alemany R et al (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces antiglioma effect in vivo. Oncogene 19:2–12PubMedCrossRefGoogle Scholar
  69. 69.
    Heise C, Hermiston T, Johnson L et al (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic antitumoral efficacy. Nat Med 6:1134–1139PubMedCrossRefGoogle Scholar
  70. 70.
    Chen Y, De Weese T, Dilley J et al (2001) CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 61:5453–5460PubMedGoogle Scholar
  71. 71.
    Yu DC, Chen Yu, Seng M et al (1999) The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 59:4200–4203PubMedGoogle Scholar
  72. 72.
    Yu YA, Shabahang S, Timiryasova TM et al (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22:313–320PubMedCrossRefGoogle Scholar
  73. 73.
    Kurihara T, Brough DE, Kovesdi I et al (2000) Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 106:763–771PubMedCrossRefGoogle Scholar
  74. 74.
    Huang TG, Savontaus MJ, Shinozaki K et al (2003) Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 10:1241–1247PubMedCrossRefGoogle Scholar
  75. 75.
    Hernandez-Alcoceba PM, Qian D et al (2002) New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 13:1737–1750PubMedCrossRefGoogle Scholar
  76. 76.
    Post DE, Meir VEG (2003) A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 22:2065–2072PubMedCrossRefGoogle Scholar
  77. 77.
    Miyatake S (2002) Gene therapy using tissue-specific replication competent HSV. Hum Cell 15:130–137PubMedCrossRefGoogle Scholar
  78. 78.
    Dabrowska K, Opolski A, Wietrzyk J et al (2004) Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of β3 integrin signaling pathway. Arch Virol 48:241–248Google Scholar
  79. 79.
    Dabrowska K, Opolski A, Wietrzyk J et al (2004) Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumor models. Anticancer Res 24:3991–3996PubMedGoogle Scholar
  80. 80.
    Eriksson F, Culp WD, Massey R et al (2007) Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56:677–687PubMedCrossRefGoogle Scholar
  81. 81.
    Górski A, Dabrowska K, Switala-Jeleñ K et al (2003) New insights into the possible role of bacteriophages in host defense and disease. Med Immunol 2:1–10CrossRefGoogle Scholar
  82. 82.
    Pajtasz-Piasecka E, Rossowska J, Duoe D et al (2008) Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunol Lett 116:24–32PubMedCrossRefGoogle Scholar
  83. 83.
    Ackerman WW, Kurtz H (1952) A new host-virus system. Proc Soc Exp Biol 81:421–423Google Scholar
  84. 84.
    Aghi M, Visted T, Depinho RA et al (2008) Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 27:4249–4254PubMedCrossRefGoogle Scholar
  85. 85.
    Aghi MS, Rabkin S, Martuza RL (2007) Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering thrombospondin-derived peptid. Cancer Res 67:440–444PubMedCrossRefGoogle Scholar
  86. 86.
    Ajayi BB, Rabo JS, Baba SS (2006) Rabies in apparently healthy dogs: histological and immunohistological studies. Niger Postgrad Med 13:128–134Google Scholar
  87. 87.
    Link N, Aubel C, Kelm JM et al (2006) Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles. Nucleic Acids Res 34:e16PubMedCrossRefGoogle Scholar
  88. 88.
    Voelkel C, Galla M, Maetzig T et al (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci USA 107:7805–7810PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence specific TAL effectors for modulating mammalian transcription. Nature Biotech 29:149–153CrossRefGoogle Scholar
  90. 90.
    Kruyt FA, Curiel DT (2002) Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 13:485–495PubMedCrossRefGoogle Scholar
  91. 91.
    Wickham TJ (2003) Ligand-directed targeting of genes to the site of disease. Nat Med 9:135–139PubMedCrossRefGoogle Scholar
  92. 92.
    Zhou G, Ye GJ, Debinski W et al (2002) Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci USA 99:15124–15129PubMedCrossRefGoogle Scholar
  93. 93.
    Tseng JC, Levin B, Hurtado A et al (2004) Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol 22:70–77PubMedCrossRefGoogle Scholar
  94. 94.
    Diaz RM, Galivo F, Kottke T et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67:2840–2848PubMedCrossRefGoogle Scholar
  95. 95.
    Leveille S, Goulet M-L, Lichty BD et al (2011) Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. J Virol 85:12160–12169PubMedCrossRefGoogle Scholar
  96. 96.
    Melero I, Hervas-Stubbs S, Glennie M et al (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7:95–106PubMedCrossRefGoogle Scholar
  97. 97.
    Melero I, Shuford WW, Newby SA et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685PubMedCrossRefGoogle Scholar
  98. 98.
    Kim EM, Sivanandham M, Stavropoulos CI et al (2001) Overview analysis of adjuvant therapies for melanomas - a special reference to results from vaccinia melanoma oncolysate adjuvant therapy trials. Surg Oncol 10:53–59PubMedCrossRefGoogle Scholar
  99. 99.
    Rudin CM, Cohen EE, Papadimitrakopoulou VA et al (2003) An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol 21:4546–4552PubMedCrossRefGoogle Scholar
  100. 100.
    Nemunaitis J, Ganly I, Khuri F et al (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 60:6359–6366PubMedGoogle Scholar
  101. 101.
    Nemunaitis J, Khuri F, Ganly I et al (2001) Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 19:289–298PubMedGoogle Scholar
  102. 102.
    Nemunaitis J, Cunningham C, Buchanan A et al (2001) Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 8:746–759PubMedCrossRefGoogle Scholar
  103. 103.
    Garber K (2006) China approves world’s first oncolytic virus therapy for cancer treatment. J Nat Can Inst 98:298–300CrossRefGoogle Scholar
  104. 104.
    Frew SE, Sammut SM, Shore AF et al (2008) Chinese health biotech and the billion-patient market. Nat Biotech 26:37–53CrossRefGoogle Scholar
  105. 105.
    Barbellido AS, Trapero CJ, Sánchez CJ et al (2008) Gene therapy in the management of oral cancer: review of literature. Medicina oral, patología oral y cirugía bucal 13:E15–E21Google Scholar
  106. 106.
    Ganly I, Eckhardt SG, Rodriguez GI et al (2000) A Phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 6:798–806PubMedGoogle Scholar
  107. 107.
    Lamont JP, Nemunaitis J, Kuhn JA et al (2000) A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol 7:588–592PubMedGoogle Scholar
  108. 108.
    Khuri FR, Nemunaitis J, Ganly I et al (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 6:879–885PubMedCrossRefGoogle Scholar
  109. 109.
    Mulvihill S, Warren R, Venook A et al (2001) Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a Phase I trial. Gene Ther 8:308–315PubMedCrossRefGoogle Scholar
  110. 110.
    Hecht JR, Bedford RR, Abbruzzese JL et al (2003) A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 9:555–561PubMedGoogle Scholar
  111. 111.
    Crompton AM, Kirn DH (2007) From ONYX-105 to armed vaccinia virus: the education and evolution of oncholytic virus development. Curr Cancer Drug Targets 7:133–139PubMedCrossRefGoogle Scholar
  112. 112.
    Vasey PA, Shulman LN, Campos S et al (2002) Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol 20:1562–1569PubMedCrossRefGoogle Scholar
  113. 113.
    Hamid O, Varterasian ML, Wadler S et al (2003) Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 21:1498–1504PubMedCrossRefGoogle Scholar
  114. 114.
    Freytag SO, Khil M, Stricker H et al (2002) Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 62:4968–4976PubMedGoogle Scholar
  115. 115.
    Freytag SO, Stricker H, Pegg J et al (2003) Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 63:7497–7506PubMedGoogle Scholar
  116. 116.
    Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a Phase I trial. Gene Ther 7:867–874PubMedCrossRefGoogle Scholar
  117. 117.
    Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7:859–866PubMedCrossRefGoogle Scholar
  118. 118.
    Papanastassiou V, Rampling R, Fraser M et al (2002) The potential for efficacy of the modified [ICP 34.5 (-)] herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9:398–406PubMedCrossRefGoogle Scholar
  119. 119.
    Bennett JJ, Delman KA, Burt BM et al (2002) Comparison of safety, delivery, and efficacy of two oncolytic herpes viruses (G207 and NV1020) for peritoneal cancer. Cancer Gene Ther 9:935–945PubMedCrossRefGoogle Scholar
  120. 120.
    Yoon SS, Nakamura H, Carroll NM et al (2000) An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 14:301–311PubMedGoogle Scholar
  121. 121.
    Kuhn I, Harden P, Bauzon M et al (2008) Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 3:e2409PubMedCrossRefGoogle Scholar
  122. 122.
    MacKie RM, Stewart B, Brown SM (2001) Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 357:525–526PubMedCrossRefGoogle Scholar
  123. 123.
    Csatary LK, Gosztonyi G, Szeberenyi J et al (2004) MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol 67:83–93PubMedCrossRefGoogle Scholar
  124. 124.
    Freeman AI, Zakay-Rones Z, Gomori JM et al (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13:221–228PubMedCrossRefGoogle Scholar
  125. 125.
    Pecora AL, Rizvi N, Cohen GI et al (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20:2251–2266PubMedCrossRefGoogle Scholar
  126. 126.
    Lal R, Harris D, Postel-Vinay S et al (2009) Reovirus: rationale and clinical trial update. Curr Opin Mol Ther 11:532–539PubMedGoogle Scholar
  127. 127.
    Thirukkumaran C, Morris DG (2009) Oncolytic viral therapy using reovirus. Methods Mol Biol 542:607–634PubMedCrossRefGoogle Scholar
  128. 128.
    Vile R, Ando D, Kirn D (2002) The oncolytic virotherapy treatment platform for cancer: unique biological and biosafety points to consider. Cancer Gene Ther 9:1062–1067PubMedCrossRefGoogle Scholar
  129. 129.
    Wodarz D (2003) Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum Gene Ther 14:153–159PubMedCrossRefGoogle Scholar
  130. 130.
    Wein LM, Wu JT, Kirn DH (2003) Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res 63:1317–1324PubMedGoogle Scholar
  131. 131.
    Wakimoto H, Ikeda K, Abe T et al (2002) The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther 5:275–282PubMedCrossRefGoogle Scholar
  132. 132.
    Wong RJ, Patel SG, Kim SH et al (2001) Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 12:253–265PubMedCrossRefGoogle Scholar
  133. 133.
    Ikeda K, Wakimoto H, Ichikawa T et al (2000) Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 74:4765–4775PubMedCrossRefGoogle Scholar
  134. 134.
    Rauen KA, Sudilovsky D, Le JL et al (2002) Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res 62:3812–3818PubMedGoogle Scholar
  135. 135.
    Anders M, Christian C, McMahon M et al (2003) Inhibition of the Raf/MEK/ERK pathway upregulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res 63:2088–2095PubMedGoogle Scholar
  136. 136.
    Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the mechanism they control: the simple truth about complex networks. Nat Rev Drug Discv 6:871–880CrossRefGoogle Scholar
  137. 137.
    Hann CL, Brahmer JR (2007) Who should receive epidermal growth factor receptor inhibitors for non-small cell lung cancer and when? Curr Treat Options Oncol 8:28–37PubMedCrossRefGoogle Scholar
  138. 138.
    Campbell S, Gromeier (2005) Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells. Onkologie 28:209–215PubMedCrossRefGoogle Scholar
  139. 139.
    Roberts MS, Lorence RM, Groene WS et al (2006) Naturally occuring oncolytic viruses for the treatment of cancer. Curr Opin Mol Therap 8:314–321Google Scholar
  140. 140.
    Roberts MS, Lorence RM, Groene WS et al (2006) Naturally occuring viruses for treatment of cancer. Disov Medici 6:217–222Google Scholar
  141. 141.
    Shah AC, Benos D, Gillespie GY et al (2003) Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 65:203–226PubMedCrossRefGoogle Scholar
  142. 142.
    Wong HH, Lemoine NR, Wang Y (2010) Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2:78–106PubMedCrossRefGoogle Scholar
  143. 143.
    Kohrt HE, Houot R, Weiskopf K et al (2012) Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest 122:1066–1075PubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2012

Authors and Affiliations

  • Md. Zeyaullah
    • 1
  • Mohan Patro
    • 2
  • Irfan Ahmad
    • 3
  • Kawthar Ibraheem
    • 1
  • P. Sultan
    • 4
  • M. Nehal
    • 5
  • Arif Ali
    • 6
  1. 1.Department of Microbiology, Faculty of MedicineOmar Al-Mukhtar UniversityAl-BaidaLibya
  2. 2.Department of Surgery, Faculty of MedicineOmar Al-Mukhtar UniversityAl-BaidaLibya
  3. 3.Department of BiosciencesJamia Millia Islamia (Central University)New DelhiIndia
  4. 4.Department of Biochemistry, Faculty of MedicineOmar Al-Mukhtar UniversityAl-BaidaLibya
  5. 5.Central University of Bihar (CUB)PatnaIndia
  6. 6.Department of BiotechnologyJamia Millia Islamia (Central University)New DelhiIndia

Personalised recommendations