Advertisement

Pathology & Oncology Research

, 17:463 | Cite as

Cellular and Molecular Mechanisms in the Two Major Forms of Inflammatory Bowel Disease

  • Laszlo Bene
  • Andras FalusEmail author
  • Noemi Baffy
  • Andras Kristof Fulop
Review

Abstract

The factors involved in the pathogenesis of Crohn’s disease and ulcerative colitis, the two major types of inflammatory bowel disease (IBD) are summarized. Intestinal antigens composed of bacterial flora along with antigen presentation and impaired mucosal barrier have an important role in the initiation of IBD. The bacterial community may be modified by the use of antibiotics and probiotics. The dentritic cells recognize the antigens by cell surface Toll like receptor and the cytoplasmic CARD/NOD system. The balance between Th1/Th2/Th17 cell populations being the source of a variety of cytokines regulates the inflammatory mechanisms and the clearance of microbes. The intracellular killing and digestion, including autophagy, are important in the protection against microbes and their toxins. The homing process determines the location and distribution of the immune cells along the gut. All these players are potential targets of pharmacological manipulation of disease status.

Keywords

Crohn’s disease Inflammatory bowl disease Intestinal tract Ulcerative colitis 

Abbreviations

APC

antigen presenting cell

ATG16L1

autophagy-related protein 16–1

CARD

caspase recruitment domain-containing protein

CD

Chron’s disease

CD

cluster of differentiation

CDAI

crohn’s disease activity index

CpG

cytosine—phosphate—guanine

DC

dendritic cell

DSS

dextran sulphate sodium

Ebi

Epstein-Barr virus induced gene

GALT

gut associated lymphoid tissue

G-CSF

granulocyte colony stimulating factor

IBD

inflammatory bowel disease

ICAM

intercellular adhesion molecule

IEC

intestinal epithelial cells

Ig

immunoglobulin

IL

interleukin

INF

interferon

IRGM

immunity-related GTPase family M

KGF

keratinocyte growth factor

KSR

Ras-1 kinase suppressor

LFA

lymphocyte function-associated antigen

LPS

lipopolysaccharide

MHC

major histocompatibility complex

MMP

matrix metalloprotease

NADPH

nicotinamide adenine dinucleotide phosphate

NCF4

neutrophil cytosol factor

NF

nuclear factor

NKT

natural killer T cell

NLR

NOD type receptor

NOD

nucleotide-binding oligomerization domain protein

PAMP

pathogen associated molecular pattern

PAR

proteinase activated receptor

PPAR

peroxisome proliferator activated receptor

PRR

pattern recognition receptor

RAG

recombination-activating gene

Ras

rat sarcoma oncogene

SCID

severe combined immunodeficiency

Smad

vertebrate homologue of Mad (Mothers Against Decapentaplegic) protein

SOCS

suppressor of cytokine signaling

STAT

signal transducers and activators of transcription

TGF

transforming growth factor

Th

T helper

TLR

toll-like receptor

TNBA

trinitrobenzoic acid

TNF

tumor necrosis factor

TNFR

TNF receptor

TRC

T cell receptor

UC

ulcerative colitis

VCAM

vascular cell adhesion molecule

References

  1. 1.
    Tresca AJ (2009) Differences Between Ulcerative Colitis and Crohn’s Disease. In: About.com: Health. http://ibdcrohns.about.com/od/ulcerativecolitis/a/diffuccd.htm. Cited 16. Jun 2010
  2. 2.
    Balfour SR (2001) Induction of mucosal immune responses by bacteria and bacterial components. Curr Opin Gastroenterol 17:555–561CrossRefGoogle Scholar
  3. 3.
    Mai V, Morris JG (2004) Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134:459–464PubMedGoogle Scholar
  4. 4.
    Wilson KH (2002) Natural biota of the human gastrointestinal tract. In: Blaser MJ, Smith PD, Ravdin JI (eds) gastrointestinal tract. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  5. 5.
    Danese S, Sans M, Fiocchi C (2004) Inflammatory bowel disease: the role of environmental factors. Autoimmun Rev 3:394–400PubMedCrossRefGoogle Scholar
  6. 6.
    Cong Y, Weaver CT, Lazenby A et al (2002) Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 169:6112–6119PubMedGoogle Scholar
  7. 7.
    Bai PA, Ouyang Q (2006) Probiotics and inflammatory bowel disease. Postgrad Med J 82:376–382PubMedCrossRefGoogle Scholar
  8. 8.
    Groux H, O'Garra A, Bigler M et al (1997) A CD4+ T-cell subset inhibits antigen specific T-cell responses and prevents colitis. Nature 389:737–742PubMedCrossRefGoogle Scholar
  9. 9.
    Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793PubMedCrossRefGoogle Scholar
  10. 10.
    Boirivant M, Marini M, Di Felice G et al (1999) Lamina propria T-cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 116:557–565PubMedCrossRefGoogle Scholar
  11. 11.
    Bu P, Keshavarzian A, Stone DD et al (2001) Apoptosis:one of the mechanisms that maintains unresponsivness of the intestinal mucosal immune system. J Immunol 166:6399–6403PubMedGoogle Scholar
  12. 12.
    Nagler-Anderson C, Bober LA, Robinson ME et al (1986) Suppression of type II collagen- induced arthritis by intragastric administration of soluble type II. collagen. Proc Natl Acad Sci USA 83:7443–7446PubMedCrossRefGoogle Scholar
  13. 13.
    Higgins PJ, Weiner HL (1988) Suppression of experimental encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 140:440–445PubMedGoogle Scholar
  14. 14.
    Vrabec TR, Gregerson DS, Dua HS et al (1992) Inhibition of experimental autoimmun uveoretinitis by oral administration by oral administration of S-antigen and syntetic peptides. Autoimmunity 12:175–184PubMedCrossRefGoogle Scholar
  15. 15.
    Neurath MF, Fuss I, Kelsall BL et al (2004) Experimental granulomatous colitis in mice abrogated by induction of TGF-β mediated oral tolerance. J Exp Med 183:2605–2616CrossRefGoogle Scholar
  16. 16.
    Kraus TA, Toy L, Chan L et al (2004) Failure to induce oral tolerance in Crohn’s disease and ulcerative colitis patients: posible genetic risk. Ann NY Acad Sci 1029:225–238PubMedCrossRefGoogle Scholar
  17. 17.
    Ilian Y (2004) Oral immune ragulation toward disease-assiciated antigens: results of phase I clinical trials in Crohn’s disease and chronic hepatitis. Ann NY Acad Sci 1029:286–298CrossRefGoogle Scholar
  18. 18.
    Hart AL, Stagg AJ, Kamm MA (2003) Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 36:111–119PubMedCrossRefGoogle Scholar
  19. 19.
    Niess JH (2008) Role of mucosal dendritic cells in inflammatory bowel disease. World J Gastroenterol 14:5138–5148PubMedCrossRefGoogle Scholar
  20. 20.
    Coombes JL, Maloy KJ (2007) Control of intestinal homeostasis by regulatory T-cells and dendritic cells. Semin Immunol 19:116–126PubMedCrossRefGoogle Scholar
  21. 21.
    Iwasaki A, Kelsall BL (2001) Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer’s patch dendritic cells. J Immunol 166:4884–4890PubMedGoogle Scholar
  22. 22.
    Hart AL, Lammers K, Brigidi P et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53:1602–1609PubMedCrossRefGoogle Scholar
  23. 23.
    Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665PubMedCrossRefGoogle Scholar
  24. 24.
    Mora JR, Bono MR, Manjunath N et al (2003) Selective imrprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424:88–93PubMedCrossRefGoogle Scholar
  25. 25.
    Krajina T, Leithäuser F, Möller P et al (2003) Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 33:1073–1083PubMedCrossRefGoogle Scholar
  26. 26.
    Bell SJ, Rigby R, English N et al (2001) Migration and maturation of human colonic dendritic cells. J Immunol 166:4958–4967PubMedGoogle Scholar
  27. 27.
    Rimoldi M, Chieppa M, Salucci V et al (2005) Intestinal immun homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514PubMedCrossRefGoogle Scholar
  28. 28.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434PubMedCrossRefGoogle Scholar
  29. 29.
    Suzuki M, Hisamatsu T, Podolsky DK (2003) Gamma interferon augments the intracellular pathway for lipopolysaccahride (LPS) recognition in human intestinal epithelial cells through coordinated upregulation of LPS uptake and expression of the intracellular Tolle-like receptor 4-MD-2 complex. Infect Immun 71:3503–3511PubMedCrossRefGoogle Scholar
  30. 30.
    Ortega-Cava CF, Ishihara S, Rumi MA et al (2003) Strategic compertmentalization of toll-like receptor 4 in the mouse gut. J Immunol 170:3977–3985PubMedGoogle Scholar
  31. 31.
    Abreu MT, Vora P, Faure E et al (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection adainst dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609–1616PubMedGoogle Scholar
  32. 32.
    Cario E, Podolsky DK (2000) Differencial alteration in intestinal epithelial cell expression of toll like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017PubMedCrossRefGoogle Scholar
  33. 33.
    Dubuquoy L, Jansson EA, Deeb S et al (2003) Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124:1265–1276PubMedCrossRefGoogle Scholar
  34. 34.
    Frolova L, Drastich P, Rossmann P et al (2008) Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. Histochem Cytochem 56:267–274CrossRefGoogle Scholar
  35. 35.
    Lakatos PL, Kiss LS, Palatka K et al (2011) Serum lipopolysaccharide-binding protein and soluble CD14 are markers of disease activity in patients with Crohn’s disease. Inflamm Bowel Dis 17:767–777PubMedCrossRefGoogle Scholar
  36. 36.
    Trinchieri G (2003) Interleukin-12 and regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRefGoogle Scholar
  37. 37.
    Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  38. 38.
    Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103PubMedCrossRefGoogle Scholar
  39. 39.
    Papp M, Altorjay I, Norman GL et al (2007) Seroreactivity to microbial components in Crohn’s disease is associated with ileal involvement, noninflammatory disease behavior and NOD2/CARD15 genotype, but not with risk for surgery in a Hungarian cohort of IBD patients. Inflamm Bowel Dis 13:984–992PubMedCrossRefGoogle Scholar
  40. 40.
    Abreu MT, Taylor KD, Lin YC et al (2002) Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123:679–688PubMedCrossRefGoogle Scholar
  41. 41.
    Szamosi T, Lakatos PL; Hungarian IBD Study Group et al (2009) The 3′UTR NFKBIA variant is associated with extensive colitis in Hungarian IBD patients. Dig Dis Sci 54:351–359CrossRefGoogle Scholar
  42. 42.
    Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603PubMedCrossRefGoogle Scholar
  43. 43.
    Chamaillard M, Philpott D, Girardin SE (2003) Gene enviroment interaction modulated by allelic heterogenety in inflammatory bowel diseases. Proc Natl Acad Sci USA 100:3455–3460PubMedCrossRefGoogle Scholar
  44. 44.
    Hugot J-P (2006) CARD15/NOD2 mutations in Crohn’s disease. Ann NY Acad Sci 1072:9–18PubMedCrossRefGoogle Scholar
  45. 45.
    Abreu MT, Arnold ET, Thomas LS et al (2002) TLR4 and MD-2 expression is regulated by immune medaited signals in human epithelial cells. J Biol Chem 277:20431–20437PubMedCrossRefGoogle Scholar
  46. 46.
    Weigmann B, Nemetz A, Becker C et al (2004) A critical regulatory role of leucin zipper transcription factor c-Maf in Th1-mediated experimental colitis. J Immunol 173:3446–3455PubMedGoogle Scholar
  47. 47.
    Elson CO, Cong Y, Iqbal N et al (2001) Immuno-bacterial homeostasis in gut: new insight into the old enigma. Semin Immunol 13:187–194PubMedCrossRefGoogle Scholar
  48. 48.
    Boirivant M, Fuss IJ, Chu A et al (1998) Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 188:1929–1939PubMedCrossRefGoogle Scholar
  49. 49.
    Maeda S, Hsu LC, Liu H et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738PubMedCrossRefGoogle Scholar
  50. 50.
    Girardin SE, Boneca IG, Carneiro LA et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587PubMedCrossRefGoogle Scholar
  51. 51.
    Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125:47–57PubMedCrossRefGoogle Scholar
  52. 52.
    Ramasundara M, Leach ST, Lemberg DA, Day AS (2009) Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol 24:202–208PubMedCrossRefGoogle Scholar
  53. 53.
    Inohara N, Ogura Y, Fontalba A et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512PubMedCrossRefGoogle Scholar
  54. 54.
    Berrebi D, Maudinas R, Hugot JP et al (2003) Card15 gene overexpression in mononuclear and epithelial cells of the inflammed Crohn’s disease colon. Gut 52:840–846PubMedCrossRefGoogle Scholar
  55. 55.
    Hisamatsu T, Suzuki M, Reinecker HC (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 24:1001–1009Google Scholar
  56. 56.
    Brimnes J, Reimann J, Nissen M et al (2001) Enteric bacterial antigens activate CD4(+) T cells from scid mice with inflammatory bowel disease. Eur J Immunol 31:23–31PubMedCrossRefGoogle Scholar
  57. 57.
    Peluso I, Pallone F, Monteleone G (2006) Interleukin-12 and Th1 immune response in Crohn’s disease: pathogenetic relevance and therapeutic implication. World J Gastroenterol 12:5606–5610PubMedGoogle Scholar
  58. 58.
    Neurath MF, Weigmann B, Finotto S et al (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Cronh’s disease. J Exp Med 195:1129–1143PubMedCrossRefGoogle Scholar
  59. 59.
    Afkarian M, Sedy JR, Yang J et al (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol 3:506–508CrossRefGoogle Scholar
  60. 60.
    Heller F, Fuss IJ, Nieuwenhuis EE et al (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638PubMedCrossRefGoogle Scholar
  61. 61.
    Pastorelli L, Garg RR, Hoang SB et al (2010) Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci U S 107:8017–8022CrossRefGoogle Scholar
  62. 62.
    Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143–1148PubMedGoogle Scholar
  63. 63.
    Mudter J, Weigmann B, Bartsch B et al (2005) Activation pattern of signal transducer and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol 100:64–72PubMedCrossRefGoogle Scholar
  64. 64.
    Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRefGoogle Scholar
  65. 65.
    Babyatsky MW, Rossiter G, Podolsky DK (1996) Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 110:975–984PubMedCrossRefGoogle Scholar
  66. 66.
    Yamaguchi T, Ihara K, Matsumoto T et al (2001) Inflammatory bowel disease-like colitis in glycogen storage disease type 1b. Inflamm Bowel Dis 7:128–132PubMedCrossRefGoogle Scholar
  67. 67.
    Weaver CT, Hatton RD, Mangan PR et al (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:851–852CrossRefGoogle Scholar
  68. 68.
    Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–242PubMedCrossRefGoogle Scholar
  69. 69.
    Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133PubMedCrossRefGoogle Scholar
  70. 70.
    Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRefGoogle Scholar
  71. 71.
    Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240PubMedCrossRefGoogle Scholar
  72. 72.
    Shen W, Durum SK (2010) Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease. Neurochem Res 35:940–946PubMedCrossRefGoogle Scholar
  73. 73.
    Bettelli E, Oukka M, Kuchroo VK (2007) TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350PubMedCrossRefGoogle Scholar
  74. 74.
    Kinugasa T, Sakaguchi T, Gu X et al (2000) Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118:1001–1011PubMedCrossRefGoogle Scholar
  75. 75.
    Rioux JD, Xavier RJ, Taylor KD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604PubMedCrossRefGoogle Scholar
  76. 76.
    Ellson CD, Davidson K, Ferguson GJ et al (2006) Neutrophils from p40phox2/2 mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937PubMedCrossRefGoogle Scholar
  77. 77.
    Ogawa M, Yoshimori T, Suzuki T, Sagara H et al (2004) Escape of intracellular Shigella from autophagy. Science 307:727–731PubMedCrossRefGoogle Scholar
  78. 78.
    Lakatos PL, Szamosi T, Szilvasi A et al (2008) ATG16L1 and IL23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. Dig Liver Dis 40:867–873PubMedCrossRefGoogle Scholar
  79. 79.
    Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211PubMedCrossRefGoogle Scholar
  80. 80.
    Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832PubMedCrossRefGoogle Scholar
  81. 81.
    Singh SB, Davis AS, Taylor G et al (2006) IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441PubMedCrossRefGoogle Scholar
  82. 82.
    Taylor GA (2007) IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol 9:1099–1107PubMedCrossRefGoogle Scholar
  83. 83.
    Mäkitalo L, Kolho KL, Karikoski R et al (2010) Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scand J Gastroenterol 45:862–871PubMedCrossRefGoogle Scholar
  84. 84.
    Salmi M, Andrew DP, Butcher EC et al (1995) Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med 181:137–149PubMedCrossRefGoogle Scholar
  85. 85.
    Bernstein CN, Sargent M, Rector E (2002) Alteration in expression of beta 2 integrins on lamina propria lymphocytes in ulcerative colitis and Crohn’s disease. Clin Immunol 104:67–72PubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2011

Authors and Affiliations

  • Laszlo Bene
    • 1
  • Andras Falus
    • 2
    • 3
    Email author
  • Noemi Baffy
    • 2
  • Andras Kristof Fulop
    • 2
  1. 1.Department of Internal MedicinePeterfy HospitalBudapestHungary
  2. 2.Department of Genetics, Cell and ImmunobiologySemmelweis UniversityBudapestHungary
  3. 3.Research Group for Inflammation Biology and Immunogenomics of Hungarian Academy of SciencesSemmelweis UniversityBudapestHungary

Personalised recommendations