Pathology & Oncology Research

, 15:711 | Cite as

Post-Translational Regulation of Cathepsin B, but not of Other Cysteine Cathepsins, Contributes to Increased Glioblastoma Cell Invasiveness In Vitro

  • Boris Gole
  • María Beatriz Durán Alonso
  • Vincenc Dolenc
  • Tamara Lah
Article

Abstract

Cells that migrate away from a central tumour into brain tissue are responsible for inefficient glioblastoma treatment. This migratory behaviour depends partially on lysosomal cysteine cathepsins. Reportedly, the expression of cathepsins B, L and S gradually increases in the progression from benign astrocytoma to the malignant glioblastoma, although their specific roles in glioma progression have not been revealed. The aim of this study was to clarify their specific contribution to glioblastoma cell invasion. The differences between the matrix invading cells and non-invading core cells from spheroids derived from glioblastoma cell culture and from glioblastoma patients’ biopsies, and embedded in type I collagen, have been studied at the mRNA, protein and cathepsin activity levels. Analyses of the two types of cells showed that the three cathepsins were up-regulated post-translationally, their specific activities increasing in the invading cells. The cystatin levels were also differentially altered, resulting in higher ratio of cathepsins B and L to stefin B in the invading cells. However, using specific synthetic inhibitors and silencing strategies revealed that only cathepsin B activity was involved in the invasion of glioblastoma cells, confirming previous notion of cathepsin B as tumour invasiveness biomarker. Our data support the concept of specific roles of cysteine cathepsins in cancer progression. Finally the study points out on the complexity of protease regulation and the need to include functional proteomics in the systems biology approaches to understand the processes associated with glioma invasion and progression.

Keywords

Brain tumours Cysteine cathepsins Cystatins Glioma Invasion Proteolysis Stefins 

Abbreviations

CatB

cathepsin B

CatL

cathepsin L

CatS

cathepsin S

CysC

cystatin C

ECM

extracellular matrix

GBM

Glioblastoma (multiformae)

PXA

Pleomorphic xanthoastrocytoma

StefA

stefin A

StefB

stefin B

References

  1. 1.
    Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108CrossRefPubMedGoogle Scholar
  2. 2.
    Sathornsumetee S, Rich NJ (2006) New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 6(7):1087–1104CrossRefPubMedGoogle Scholar
  3. 3.
    Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501CrossRefPubMedGoogle Scholar
  4. 4.
    Demuth T, Berens M (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70(2):217–228CrossRefPubMedGoogle Scholar
  5. 5.
    Wang W, Goswami S, Sahai E et al (2005) Tumour cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biology 15(3):138–145CrossRefGoogle Scholar
  6. 6.
    Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15(1):87–96CrossRefPubMedGoogle Scholar
  7. 7.
    Mariani L, Beaudry C, McDonough WS et al (2001) Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neurooncol 53(2):161–176CrossRefPubMedGoogle Scholar
  8. 8.
    Demuth T, Rennert JL, Hoelzinger DB et al (2008) Glioma cells on the run- the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54CrossRefPubMedGoogle Scholar
  9. 9.
    Berens ME, Rief MD, Loo MA, Giese A (1994) The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metastasis 12(6):405–415CrossRefPubMedGoogle Scholar
  10. 10.
    Hoelzinger DB, Nakada M, Demuth T et al (2008) Autotaxin: a secereted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86(3):297–309CrossRefPubMedGoogle Scholar
  11. 11.
    Wolf K, Friedl P (2005) Functional imaging of pericellular proteolysis in cancer cell invasion. Biochemie 87(3–4):315–320CrossRefGoogle Scholar
  12. 12.
    Tu C, Ortega–Cava CF, Chen G et al (2008) Lysosomal cathepsins B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in the v-Src fibroblasts. Cancer Res 86(22):9147–9156CrossRefGoogle Scholar
  13. 13.
    Lopez–Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nature Rev Cancer 7(10):800–808CrossRefGoogle Scholar
  14. 14.
    Levičar N, Nuttall RL, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838CrossRefGoogle Scholar
  15. 15.
    Lah TT, Duran Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6(3):257–279CrossRefPubMedGoogle Scholar
  16. 16.
    Rempel SA, Rosenblum ML, Mikkelsen T et al (1994) CathepsinB expression and localization in glioma progression and invasion. Cancer Res 54(23):6027–6031PubMedGoogle Scholar
  17. 17.
    Lah TT, Strojnik T, Levičar N et al (2000) Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers 15(1):90–93PubMedGoogle Scholar
  18. 18.
    Strojnik T, Kos J, Židanik B, Lah TT (1999) Cathepsin B immunohistochemical staining in tumour and endothelial cells is a new prognostic factor for survival in patients with brain tumours. Clin Cancer Res 5(3):559–567PubMedGoogle Scholar
  19. 19.
    Strojnik T, Kavalar R, Trinkaus M, Lah TT (2005) Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 29(5):448–455CrossRefPubMedGoogle Scholar
  20. 20.
    Sivarapathi M, Yamamoto M, Nicolson GL et al (1996) Expression and immunohistochemical localization of cathepsin L during progression of human gliomas. Clin Exp Metastasis 14(1):27–34CrossRefGoogle Scholar
  21. 21.
    Flannery T, Gibson D, Mirakhur M et al (2003) The clinical significance of cathepsin S expression in human astrocytomas. Am J Pathol 163(1):175–182PubMedGoogle Scholar
  22. 22.
    Flannery T, McQuaid S, McGoohan C et al (2006) Cathepsin S expression: An independent prognostic factor in glioblastoma tumours-A pilot study. Int J Cancer 119(4):854–860CrossRefPubMedGoogle Scholar
  23. 23.
    Kos J, Lah TT (2006) Cystatins in cancer. In: Zerovnik E, Kopitar-Jerala N (eds) Human Stefins and Cystatins. Nova Science Publishers Inc, New YorkGoogle Scholar
  24. 24.
    Abrahamson M (1994) Cystatins. Methods Enzymol 244:685–700CrossRefPubMedGoogle Scholar
  25. 25.
    Lignelid H, Collins VP, Jacobsson B (1997) Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuropathol 93(5):494–500CrossRefPubMedGoogle Scholar
  26. 26.
    Nakabayashi H, Hara M, Shimuzu K (2005) Clinicopathologic significance of cystatin C expression in gliomas. Hum Pathol 36(9):1008–1015CrossRefPubMedGoogle Scholar
  27. 27.
    Konduri SD, Yanamandra N, Siddique K et al (2002) Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21(57):8705–8712CrossRefPubMedGoogle Scholar
  28. 28.
    Bervar A, Zajc I, Sever B et al (2003) Invasiveness of transformed human breast epithelial cell lines is related to cathepsin B and inhibited by cysteine proteinase inhibitors. Biol Chem 384(3):447–455CrossRefPubMedGoogle Scholar
  29. 29.
    Zajc I, Hreljac I, Lah T (2006) Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res 26(5A):3357-64Google Scholar
  30. 30.
    Hegedüs B, Marga F, Jakab K et al (2006) The Interplay of Cell-Cell and Cell-Matrix Interactions in the Invasive Properties of Brain Tumors. Biophys J 91(7):2708–2716CrossRefPubMedGoogle Scholar
  31. 31.
    Corcoran A, De Ridder LI, Del Duca D et al (2003) Evolution of the brain tumour spheroid model: transcending current model limitations. Acta Neurochir (Wien) 145(9):819–824CrossRefGoogle Scholar
  32. 32.
    Rubenstein BM, Kaufman LJ (2008) The role of extracellular matrix in glioma invasion:a cellular potts model approach. Biophys J 95(12):5661–5680CrossRefPubMedGoogle Scholar
  33. 33.
    Gondi CS, Kandhukuri N, Kondraganti S et al (2006) RNA interference–mediated simultaneous down-regulation of urokinase-type plasminogen activator receptor and cathepsin B induces caspase-mediated apoptosis in SNB 19 human glioma cells. Mol Cancer Ther 5(12):3197–3208CrossRefPubMedGoogle Scholar
  34. 34.
    Gocheva V, Zeng W, Ke D et al (2006) Distinct role for cysteine cathepsin genes in multistage tumourigenesis. Genes Dev 20(5):543–556CrossRefPubMedGoogle Scholar
  35. 35.
    Reinheckel T, Gocheva V, Peters C, Joyce JA (2008) Roles of cysteine proteases in tumour progression: Analysis of cysteine cathepsins knockout mice in cancer models. In: Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF (eds) The Cancer Degradome. Springer Science + Business Media, New YorkGoogle Scholar
  36. 36.
    Lakka C, Gondi CS, Yanamandra N et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumour cell invasion, tumour growth and angiogenesis. Oncogene 23(27):4681–4689CrossRefPubMedGoogle Scholar
  37. 37.
    Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283(2):206–214CrossRefPubMedGoogle Scholar
  38. 38.
    Klose A, Wilbrand-Hennes A, Zigrino P et al (2006) Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 118(11):2735–2743CrossRefPubMedGoogle Scholar
  39. 39.
    Podgorski I, Linebough BE, Sameni M et al (2005) Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Neoplasia 7(3):207–223CrossRefPubMedGoogle Scholar
  40. 40.
    Sameni M, Dosescu J, Sloane BF (2001) Imaging proteolysis by living human glioma cells. Biol Chem 382(5):785–788CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu DM, Uckun FM (2000) Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells. Clin Cancer Res 6(5):2064–2069PubMedGoogle Scholar
  42. 42.
    Felbor U, Kesseler B, Mothes W et al (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99(12):7883–7888CrossRefPubMedGoogle Scholar
  43. 43.
    Levičar N, Dewey RA, Daley E et al (2003) Selective supression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 10(2):141–151CrossRefPubMedGoogle Scholar
  44. 44.
    Castino R, Pace D, Démoz M et al (2002) Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 97(6):775–779CrossRefPubMedGoogle Scholar
  45. 45.
    Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2009

Authors and Affiliations

  • Boris Gole
    • 1
    • 3
  • María Beatriz Durán Alonso
    • 1
  • Vincenc Dolenc
    • 2
  • Tamara Lah
    • 1
  1. 1.Department of Genetic Toxicology and Cancer BiologyNational Institute of BiologyLjubljanaSlovenia
  2. 2.Department of NeurosurgeryUniversity Clinical CentreLjubljanaSlovenia
  3. 3.National Institute of BiologyLjubljanaSlovenia

Personalised recommendations