Virologica Sinica

, Volume 33, Issue 3, pp 261–269 | Cite as

HIV-1 Protein Tat1–72 Impairs Neuronal Dendrites via Activation of PP1 and Regulation of the CREB/BDNF Pathway

  • Yu Liu
  • Deyu Zhou
  • Jiabin Feng
  • Zhou Liu
  • Yue Hu
  • Chang LiuEmail author
  • Xiaohong KongEmail author
Research Article


Despite the success of combined antiretroviral therapy in recent years, the prevalence of human immunodeficiency virus (HIV)-associated neurocognitive disorders in people living with HIV-1 is increasing, significantly reducing the health-related quality of their lives. Although neurons cannot be infected by HIV-1, shed viral proteins such as transactivator of transcription (Tat) can cause dendritic damage. However, the detailed molecular mechanism of Tat-induced neuronal impairment remains unknown. In this study, we first showed that recombinant Tat (1–72 aa) induced neurotoxicity in primary cultured mouse neurons. Second, exposure to Tat1–72 was shown to reduce the length and number of dendrites in cultured neurons. Third, Tat1–72 (0–6 h) modulates protein phosphatase 1 (PP1) expression and enhances its activity by decreasing the phosphorylation level of PP1 at Thr320. Finally, Tat1–72 (24 h) downregulates CREB activity and CREB-mediated gene (BDNF, c-fos, Egr-1) expression. Together, these findings suggest that Tat1–72 might impair cognitive function by regulating the activity of PP1 and the CREB/BDNF pathway.


Recombinant tat HIV-associated neurocognitive disorders (HAND) Dendrite impairment Protein phosphatase 1 (PP1) CREB/BDNF 



This work was supported by Grants from the National Natural Science Foundation of China (81571987).

Author Contributions

YL and CL conceived the experiments. YL, DYZ, JBF, ZL, and YH carried out the experiments. YL and DYZ analyzed the data. YL, CL, and XHK wrote the paper. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

The whole study was approved by the Administrative Committee on Animal Welfare of School of Medicine, Nankai University, China (Laboratory Animal Care and Use Committee Authorization, permit number SYXK-2014-0003). All institutional and national guidelines for the care and use of laboratory animals were followed.


  1. Alberts AS, Montminy M, Shenolikar S, Feramisco JR (1994) Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol Cell Biol 14:4398–4407CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali A, Banerjea AC (2016) Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci Rep 6:27539CrossRefPubMedPubMedCentralGoogle Scholar
  3. Avdoshina V, Garzino-Demo A, Bachis A, Monaco MC, Maki PM, Tractenberg RE, Liu C, Young MA, Mocchetti I (2011) HIV-1 decreases the levels of neurotrophins in human lymphocytes. AIDS 25:1126–1128CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I (2012) Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci 32:9477–9484CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240CrossRefPubMedGoogle Scholar
  6. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99CrossRefPubMedGoogle Scholar
  7. Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 248:228–235CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bordelon JR, Smith Y, Nairn AC, Colbran RJ, Greengard P, Muly EC (2005) Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate prefrontal cortex. Cereb Cortex 15:1928–1937CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE (2011) HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 286:41125–41134CrossRefPubMedPubMedCentralGoogle Scholar
  10. Deyer SM, Rodriguez M, Lapierre J, Costinl BN, El-Hage N (2015) Differing roles of autophagy in HIV-associated neurocognitive impairment and encephalitis with implications for morphine co-exposure. Front Microbiol 6:653Google Scholar
  11. Dohadwala M, da Cruz e Silva EF, Hall FL, Williams RT, Carbonaro-Hall DA, Nairn AC, Greengard P, Berndt N (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci USA 91:6408–6412CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dore K, Aow J, Malinow R (2015) Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow. Proc Natl Acad Sci USA 112:14705–14710CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44CrossRefPubMedGoogle Scholar
  15. Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311CrossRefPubMedGoogle Scholar
  16. Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95-NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci USA 104:3438–3443CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A, Knapp PE, Hauser KF (2010) Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol 177:1397–1410CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF (2013) Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 73:443–453CrossRefPubMedGoogle Scholar
  19. Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D’Emilia DM, Friedlander RM, Yuan JY, Masliah E, Lipton SA (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22:4015–4024CrossRefPubMedGoogle Scholar
  20. Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418:970–975CrossRefPubMedGoogle Scholar
  21. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188CrossRefPubMedGoogle Scholar
  22. Hou H, Sun L, Siddoway BA, Petralia RS, Yang H, Gu H, Nairn AC, Xia H (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203:521–535CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hu XD, Huang Q, Yang X, Xia H (2007) Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. J Neurosci 27:4674–4686CrossRefPubMedGoogle Scholar
  24. Kim HJ, Martemyanov KA, Thayer SA (2008) Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci 28:12604–12613CrossRefPubMedPubMedCentralGoogle Scholar
  25. Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci USA 94:2168–2173CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li W, Huang Y, Reid R, Steiner J, Malpica-Llanos T, Darden TA, Shankar SK, Mahadevan A, Satishchandra P, Nath A (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28:12190–12198CrossRefPubMedGoogle Scholar
  28. Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF, Varrone JJ, Majewska AK, Dewhurst S, Gelbard HA (2011) HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS ONE 6:e23915CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416CrossRefPubMedGoogle Scholar
  30. Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499PubMedPubMedCentralGoogle Scholar
  31. Maragos WF, Tillman P, Jones M, Bruce-Keller AJ, Roth S, Bell JE, Nath A (2003) Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience 117:43–53CrossRefPubMedGoogle Scholar
  32. Martinez-Cerdeno V (2017) Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol 77:393–404CrossRefPubMedGoogle Scholar
  33. Munton RP, Vizi S, Mansuy IM (2004) The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett 567:121–128CrossRefPubMedGoogle Scholar
  34. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480PubMedPubMedCentralGoogle Scholar
  35. Nath S, Bachani M, Harshavardhana D, Steiner JP (2012) Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. J Neurovirol 18:445–455CrossRefPubMedGoogle Scholar
  36. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23CrossRefPubMedGoogle Scholar
  37. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11:13CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rebelo S, Santos M, Martins F, da Cruz e Silva EF, da Cruz e Silva OA (2015) Protein phosphatase 1 is a key player in nuclear events. Cell Signal 27:2589–2598CrossRefPubMedGoogle Scholar
  39. Rex CS, Lin CY, Kramar EA, Chen LY, Gall CM, Lynch G (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 27:3017–3029CrossRefPubMedGoogle Scholar
  40. Robertson K, Bayon C, Molina JM, McNamara P, Resch C, Munoz-Moreno JA, Kulasegaram R, Schewe K, Burgos-Ramirez A, De Alvaro C, Cabrero E, Guion M, Norton M, van Wyk J (2014) Screening for neurocognitive impairment, depression, and anxiety in HIV-infected patients in Western Europe and Canada. AIDS Care 26:1555–1561CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, Miller E (2016) Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology 86:334–340CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, Beaumelle B, Biard-Piechaczyk M, Espert L (2015) Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+T lymphocytes. J Virol 89:615–625CrossRefPubMedGoogle Scholar
  43. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9CrossRefPubMedGoogle Scholar
  44. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484CrossRefPubMedGoogle Scholar
  45. Shin AH, Thayer SA (2013) Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures. Mol Cell Neurosci 54:22–29CrossRefPubMedGoogle Scholar
  46. Strack S, Barban MA, Wadzinski BE, Colbran RJ (1997) Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem 68:2119–2128CrossRefPubMedGoogle Scholar
  47. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726CrossRefPubMedGoogle Scholar
  48. Wayman WN, Chen L, Napier TC, Hu XT (2015) Cocaine self-administration enhances excitatory responses of pyramidal neurons in the rat medial prefrontal cortex to human immunodeficiency virus-1 Tat. Eur J Neurosci 41:1195–1206CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97:11466–11471CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang H, Hou H, Pahng A, Gu H, Nairn AC, Tang YP, Colombo PJ, Xia H (2015) Protein phosphatase-1 inhibitor-2 Is a novel memory suppressor. J Neurosci 35:15082–15087CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhong Y, Zhang B, Eum SY, Toborek M (2012) HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 32:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhou HX, Li XY, Li FY, Liu C, Liang ZP, Liu S, Zhang B, Wang TY, Chu TC, Lu L, Ning GZ, Kong XH, Feng SQ (2014) Targeting RPTPsigma with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Brain Res 1586:46–63CrossRefPubMedGoogle Scholar
  53. Zhu J, Midde NM, Gomez AM, Sun WL, Harrod SB (2015) Intra-ventral tegmental area HIV-1 Tat1–86 attenuates nicotine-mediated locomotor sensitization and alters mesocorticolimbic ERK and CREB signaling in rats. Front Microbiol 6:540PubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Medical Molecular Virology, School of MedicineNankai UniversityTianjinChina

Personalised recommendations