Virologica Sinica

, Volume 32, Issue 5, pp 349–356 | Cite as

Extracellular vesicles: novel vehicles in herpesvirus infection

  • Lingzhi Liu
  • Quan Zhou
  • Yan Xie
  • Lielian Zuo
  • Fanxiu Zhu
  • Jianhong LuEmail author
Open Access


Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses.


herpesviruses extracellular vesicles (EVs) infection pathogenesis 



This work was supported by the National Natural Science Foundations of China (81372139, 31670171, 81728011), the National Key Research and Development Program of China (2017YFC1200204), the Hunan Provincial Natural Science Foundation of China (2015JJ2149).


  1. Agut H, Bonnafous P, Gautheretdejean A. 2015. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev, 28: 313–335.CrossRefGoogle Scholar
  2. Ahmed W, Philip PS, Attoub S, Khan G. 2015. Epstein-Barr virus infected cells release Fas-ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway. J Gen Virol, 96: 3646–3659.CrossRefGoogle Scholar
  3. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. 2013. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol, 113: 1–11.CrossRefGoogle Scholar
  4. Akinyi B, Odhiambo C, Otieno F, Inzaule S, Oswago S, Kerubo E, Ndivo R, Zeh C. 2017. Prevalence, incidence and correlates of HSV-2 infection in an HIV incidence adolescent and adult cohort study in western Kenya. PloS One, 12: e0178907.CrossRefGoogle Scholar
  5. Anderson MR, Kashanchi F, Jacobson S. 2016. Exosomes in Viral Disease. Neurotherapeutics, 13: 535–546.CrossRefGoogle Scholar
  6. Arnold N, Messaoudi I. 2017. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res, 238: 226.CrossRefGoogle Scholar
  7. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, Léveillé N, Rinkel RN, Hopmans ES, Swaminathan S. 2016. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc Natl Acad Sci U S A, 113: E587–E596.CrossRefGoogle Scholar
  8. Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Göttlinger H, Campadellifiume G, Palù G, Parolin C. 2007. Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies. J Virol, 81: 11468–11478.CrossRefGoogle Scholar
  9. Cepeda V, Esteban M, Fraileramos A. 2010. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol, 12: 386–404.CrossRefGoogle Scholar
  10. Chan T, Barra NG, Lee AJ, Ashkar AA. 2011. Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J Reprod Immunol, 88: 210–218.CrossRefGoogle Scholar
  11. Choi UY, Park A, Jung JU. 2017. Double the Trouble When Herpesviruses Join Hands. Cell Host Microbe, 22: 5–7.CrossRefGoogle Scholar
  12. Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. 2013. Systemically Circulat-ing Viral and Tumor-Derived MicroRNAs in KSHV-Associated Malignancies. PloS Pathog, 9: e1003484.CrossRefGoogle Scholar
  13. Crump CM, Yates C, Minson T. 2007. Herpes Simplex Virus Type 1 Cytoplasmic Envelopment Requires Functional Vps4. J Virol, 81: 7380–7387.CrossRefGoogle Scholar
  14. Ding L, Li L, Yang J, Zhou S, Li W, Tang M, Shi Y, Yi W, Cao Y. 2010. Latent membrane protein 1 encoded by Epstein-Barr virus induces telomerase activity via p16INK4A/Rb/E2F1 and JNK signaling pathways. J Med Virol, 79: 1153–1163.CrossRefGoogle Scholar
  15. Dolcetti R. 2015. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol, 34: 58–69.CrossRefGoogle Scholar
  16. Dreyfus DH. 2013. Herpesviruses and the microbiome. J Allergy Clin Immunol, 132: 1278–1286.CrossRefGoogle Scholar
  17. Duijvesz D, Luider T, Bangma CH, Jenster G. 2011. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol, 59: 823–831.CrossRefGoogle Scholar
  18. Fraile-Ramos A, Pelchen-Matthews A, Risco C, Rejas MT, Emery VC, Hassan-Walker AF, Esteban M, Marsh M. 2007. The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell Microbiol, 9: 2955–2967.CrossRefGoogle Scholar
  19. Gallo A, Vella S, Miele M, Timoneri F, Di BM, Bosi S, Sciveres M, Conaldi PG. 2016. Global profiling of viral and cellular noncoding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett, 388: 334–343.CrossRefGoogle Scholar
  20. Han Z, Liu X, Chen X, Zhou X, Du T, Roizman B, Zhou G. 2016. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci U S A, 113: E894–E901.CrossRefGoogle Scholar
  21. Hancock MH, Skalsky RL. 2017. Roles of Non-coding RNAs During Herpesvirus Infection. DOI: 10.1007/82_2017_31.CrossRefGoogle Scholar
  22. Hogue IB, Scherer J, Enquist LW. 2016. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. Mbio, 7: e00820–e00816.CrossRefGoogle Scholar
  23. Hudson AW. 2014. Roseoloviruses and their modulation of host defenses. Curr Opin Virol, 9: 178–187.CrossRefGoogle Scholar
  24. Hurley JH. 2015. ESCRTs are everywhere. EMBO J, 34: 2398–2407.CrossRefGoogle Scholar
  25. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG Jr. 2016. CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and non-canonical NF-kB signaling. J Virol, 91. pii: e02251–16.Google Scholar
  26. Iwakiri D. 2015. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res, 212: 30–38.CrossRefGoogle Scholar
  27. Jia S, Zhai H, Zhao M. 2014. MicroRNAs regulate immune system via multiple targets. Discov Med, 18: 237–247.Google Scholar
  28. Meckes DG Jr. 2015. Exosomal Communication Goes Viral. J Virol, 89: 5200–5203.CrossRefGoogle Scholar
  29. Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. 2013. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A, 110: 2925–2933.CrossRefGoogle Scholar
  30. Kalamvoki M, Deschamps T. 2016. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire. Virol J, 13: 1–12.CrossRefGoogle Scholar
  31. Kalamvoki M, Du T, Roizman B. 2014. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A, 111: E4991–E4996.CrossRefGoogle Scholar
  32. Knipe DM, Raja P, Lee J. 2017. Viral gene products actively promote latent infection by epigenetic silencing mechanisms. Curr Opin Infect Dis, 23: 68–74.Google Scholar
  33. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Kim YJ, Lee G, Cohen JI, Venkatesan A. 2017. Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol. pii: e00640–17.Google Scholar
  34. Lee AJ, Ashkar AA. 2012. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis, 25: 92–99.CrossRefGoogle Scholar
  35. Lee Y, El AS, Wood MJ. 2012. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet, 21: 125–134.CrossRefGoogle Scholar
  36. Li L, Chen XP, Li YJ. 2010. MicroRNA-146a and human disease. Scand J Immunol, 71: 227–231.CrossRefGoogle Scholar
  37. Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W. 2007. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res, 130: 275–280.CrossRefGoogle Scholar
  38. Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X. 2016. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells. J Virol, 90: 3469–3479.CrossRefGoogle Scholar
  39. Lo AKF, Dawson CW, Young LS, Lo KW. 2017. The role of Metabolic Reprogramming in γ-Herpesvirus-associated Oncogenesis. Int J Cancer, 141: 1512–1521.CrossRefGoogle Scholar
  40. Miettinen JJ, Matikainen S, Nyman TA. 2012. Global Secretome Characterization of Herpes Simplex Virus 1-Infected Human Primary Macrophages. J Virol, 86: 12770–12778.CrossRefGoogle Scholar
  41. Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K. 2008. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic, 9: 1728–1742.CrossRefGoogle Scholar
  42. Olsson J, Kok E, Adolfsson R, Lövheim H, Elgh F. 2017. Herpes virus seroepidemiology in the adult Swedish population. Immun Ageing, 14: 10.CrossRefGoogle Scholar
  43. Ota M, Serada S, Naka T, Mori Y. 2014. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol, 58: 119–125.CrossRefGoogle Scholar
  44. Parra M, Alcala A, Amoros C, Baeza A, Galiana A, Tarragó D, García-Quesada MÁ, Sánchez-Hellín V. 2017. Encephalitis associated with human herpesvirus-7 infection in an immunocompetent adult. Virol J, 14: 97.CrossRefGoogle Scholar
  45. Pawliczek T, Crump CM. 2009. Herpes Simplex Virus Type 1 Production Requires a Functional ESCRT-III Complex but Is Independent of TSG101 and ALIX Expression. J Virol, 83: 11254–11264.CrossRefGoogle Scholar
  46. Pegtel DM. 2013. Oncogenic herpesviruses sending mixed signals. Proc Natl Acad Sci U S A, 110: 12503–12504.CrossRefGoogle Scholar
  47. Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. 2016. KSHV Genome Replication and Maintenance. Front Microbiol, 7: 54.CrossRefGoogle Scholar
  48. Riva N, Franconi I, Meschiari M, Franceschini E, Puzzolante C, Cuomo G, Bianchi A, Cavalleri F, Genovese M, Mussini C. 2017. Acute human herpes virus 7 (HHV-7) encephalitis in an immunocompetent adult patient: a case report and review of literature. Infection, 45: 1–4.CrossRefGoogle Scholar
  49. Sotelo JR, Porter KR. 1959. An Electron Microscope Study of the Rat Ovum. J Biophys Biochem Cytol, 5: 327–342.CrossRefGoogle Scholar
  50. Sullivan BM, Coscoy L. 2010. The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J Virol, 84: 1265–1275.CrossRefGoogle Scholar
  51. Szatanek R, Bajkrzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. 2017. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci, 18. pii: E1153.CrossRefGoogle Scholar
  52. Tandon R, Aucoin DP, Mocarski ES. 2009. Human Cytomegalovirus Exploits ESCRT Machinery in the Process of Virion Maturation. J Virol, 83: 10797–10807.CrossRefGoogle Scholar
  53. Temme S, Eis-Hübinger AM, Mclellan AD, Koch N. 2010. The herpes simplex virus-1 encoded glycoprotein B diverts HLADR into the exosome pathway. J Immunol, 184: 236–243.CrossRefGoogle Scholar
  54. Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front Microbiol, 7: 151.CrossRefGoogle Scholar
  55. Tkach M, Théry C. 2016. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 164: 1226.CrossRefGoogle Scholar
  56. van Diemen FR, Lebbink RJ. 2016. CRISPR/Cas9, a powerful tool to target human herpesviruses. Cellular Microbiology. DOI: 10.1111/cmi.12694.Google Scholar
  57. Veettil MV, Bandyopadhyay C, Dutta D, Chandran B. 2014. Interaction of KSHV with host cell surface receptors and cell entry. Viruses, 6: 4024–4046.CrossRefGoogle Scholar
  58. Walker JD, Maier CL, Pober JS. 2009. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol, 182: 1548–1559.CrossRefGoogle Scholar
  59. Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P. 2017. Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Front Pharmacol, 8: 300.CrossRefGoogle Scholar
  60. Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS. 2016. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumor Biol, 37: 313–321.CrossRefGoogle Scholar
  61. Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J. 2015a. Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PloS Pathog, 11: e1005001.CrossRefGoogle Scholar
  62. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. 2015b. Exosomes in cancer: small particle, big player. J Hematol Oncol, 8: 83.CrossRefGoogle Scholar
  63. Zheng H, Li L, Hu D, Deng X, Cao Y. 2007. Role of Epstein-Barr Virus Encoded Latent Membrane Protein 1 in the Carcinogenesis of Nasopharyngeal Carcinoma. Cell Mol Immunol, 4: 185–196.Google Scholar
  64. Zheng Y, Zhang W, Ye Q, Zhou Y, Xiong W, He W, Deng M, Zhou M, Guo X, Chen P. 2012. Inhibition of Epstein-Barr Virus Infection by Lactoferrin. J Innate Immun, 4: 387–398.CrossRefGoogle Scholar
  65. Zhu Y, Yan Y, Guo J, Ying D, Ye L, Qiu J, Zeng Z, Wu X, Xing Y, Xiang L. 2017. Ex vivo2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget, 8: 15267–15282.PubMedPubMedCentralGoogle Scholar
  66. Zuo L, Yu H, Liu L, Tang Y, Wu H, Jing Y, Zhu M, Du S, Lian Z, Li C. 2015. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-kB. Oncotarget, 6: 41033–41044.PubMedPubMedCentralGoogle Scholar
  67. Zuo L, Yue W, Du S, Xin S, Zhang J, Liu L, Li G, Lu J. 2017. An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol Sin, 32: 175–187.CrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Cancer Research InstituteCentral South UniversityChangshaChina
  3. 3.Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  4. 4.Department of Microbiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
  5. 5.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations