Virologica Sinica

, Volume 32, Issue 5, pp 415–422 | Cite as

Prevalence of Kaposi’s sarcoma-associated herpesvirus among intravenous drug users: a systematic review and meta-analysis

  • Qiwen Fang
  • Zhenqiu Liu
  • Zhijie Zhang
  • Yan ZengEmail author
  • Tiejun ZhangEmail author
Research Article


Intravenous drug users (IDUs) have been demonstrated to be highly vulnerable to HIV/AIDS. Nevertheless, the prevalence of Kaposi’s sarcoma associated herpesvirus (KSHV), an important co-infected agent with HIV, among this population remained obscure. We conducted a systematic review on the epidemiological features of KSHV among IDUs worldwide. Eligible studies were retrieved from 6 electronic databases (PubMed, EMBASE, Web of Science, CBM, CNKI and Wanfang). We calculated the pooled prevalence and 95% confidence interval (CI) overall and among subgroups using either random-effects model or fixed-effects model depending on between-study heterogeneity. The potential publication bias was assessed by the Egger’s test. A meta-regression analysis was performed to explore the sources of heterogeneity. Finally, twenty-two studies with a total sample of 7881 IDUs were included in the analysis. The pooled prevalence of KSHV was 14.71% (95% CI 11.12%–19.46%) among IDUs. Specifically, KSHV prevalence was 10.86% (95% CI 6.95%–16.96%) in HIV-negative IDUs, and 13.56% (95% CI 10.57%–17.38%) in HIV-positive IDUs. Moreover, prevalence among IDUs from the three continents involved in the current study was similar: 16.10% (95%CI 7.73%–33.54%) in Asia; 14.22% (95%CI 8.96%–22.57%) in Europe and 14.06% (95%CI 11.38%–17.37%) in America. Globally, IDUs are at higher risk of the KSHV infection when compared with the general population, regardless of geographical region or HIV-infection status.


Kaposi’s sarcoma-associated herpesvirus (KSHV) prevalence intravenous drug users (IDUs) 



This work was supported by the Natural Science Foundation of Shanghai (17ZR1401400), the Natural Science Foundation of China (grant no. 81772170, U603117) and the Doctoral Fund of Ministry of Education of China (Grant No. 20120071120050).

Author Contributions

QWF, ZQL and TJZ designed the experiments. QWF, ZQL and YZ searched literature, collected and summed up the data. QWF, YZ and ZJZ analyzed the data. QWF, ZQL wrote the paper. All authors read and approved the final manuscript.

Compliance with Ethics Guidelines

The author declares no conflict of interest. This article does not contain any studies with human or animal subjects performed by the author.

Supplementary material

12250_2017_4051_MOESM1_ESM.pdf (1023 kb)
Prevalence of kaposi’s sarcoma-associated herpesvirus among intravenous drug users: a systematic review and meta-analysis


  1. Ahmadi Ghezeldasht S, Hassannia T, Rafatpanah H, Hekmat R, Valizadeh N, Ghayour Mobarhan M, Rezaee SA. 2015. Oncogenic Virus Infections in the General Population and End-stage Renal Disease Patients With Special Emphasis on Kaposi’s Sarcoma Associated Herpes Virus (KSHV) in Northeast of Iran. Jundishapur J Microbiol, 8: e14920.PubMedPubMedCentralGoogle Scholar
  2. Atkinson J, Edlin BR, Engels EA, Kral AH, Seal K, Gamache CJ, Whitby D, O’Brien TR. 2003. Seroprevalence of human herpesvirus 8 among injection drug users in San Francisco. J Infect Dis, 187: 974–981.PubMedGoogle Scholar
  3. Bagni R, Whitby D. 2009. Kaposi’s sarcoma-associated herpesvirus transmission and primary infection. Curr Opin HIV AIDS, 4: 22–26.PubMedGoogle Scholar
  4. Bernstein KT, Jacobson LP, Jenkins FJ, Vlahov D, Armenian HK. 2003. Factors associated with human herpesvirus type 8 infection in an injecting drug user cohort. Sex Transm Dis, 30: 199–204.PubMedGoogle Scholar
  5. Biryahwaho B, Dollard SC, Pfeiffer RM, Shebl FM, Munuo S, Amin MM, Hladik W, Parsons R, Mbulaiteye SM. 2010. Sex and geographic patterns of human herpesvirus 8 infection in a nationally representative population-based sample in Uganda. J Infect Dis, 202: 1347–1353.PubMedPubMedCentralGoogle Scholar
  6. Butler LM, Dorsey G, Hladik W, Rosenthal PJ, Brander C, Neilands TB, Mbisa G, Whitby D, Kiepiela P, Mosam A, Mzolo S, Dollard SC, Martin JN. 2009. Kaposi sarcoma-associated herpesvirus (KSHV) seroprevalence in population-based samples of African children: evidence for at least 2 patterns of KSHV transmission. J Infect Dis, 200: 430–438.PubMedPubMedCentralGoogle Scholar
  7. Cannon MJ, Dollard SC, Smith DK, Klein RS, Schuman P, Rich JD, Vlahov D, Pellett PE. 2001. Blood-borne and sexual transmission of human herpesvirus 8 in women with or at risk for human immunodeficiency virus infection. N Engl J Med, 344: 637–643.PubMedGoogle Scholar
  8. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.PubMedGoogle Scholar
  9. Diamond C, Thiede H, Perdue T, MacKellar D, Valleroy LA, Corey L. 2001. Seroepidemiology of human herpesvirus 8 among young men who have sex with men. Sex Transm Dis, 28: 176–183.PubMedGoogle Scholar
  10. Gambus G, Bourboulia D, Esteve A, Lahoz R, Rodriguez C, Bolao F, Sirera G, Muga R, Del RJ, Boshoff C, Whitby D, Casabona J. 2001. Prevalence and distribution of HHV-8 in different subpopulations, with and without HIV infection, in Spain. AIDS, 15: 1167–1174.PubMedGoogle Scholar
  11. Goedert JJ, Charurat M, Blattner WA, Hershow RC, Pitt J, Diaz C, Mofenson LM, Green K, Minkoff H, Paul ME, Thomas DL, Whitby D. 2003. Risk factors for Kaposi’s Sarcoma-associated herpesvirus infection among HIV-1-infected pregnant women in the USA. AIDS, 17: 425–433.PubMedGoogle Scholar
  12. Greenblatt RM, Jacobson LP, Levine AM, Melnick S, Anastos K, Cohen M, DeHovitz J, Young MA, Burns D, Miotti P, Koelle DM. 2001. Human herpesvirus 8 infection and Kaposi’s sarcoma among human immunodeficiency virus-infected and -uninfected women. J Infect Dis, 183: 1130–1134.PubMedGoogle Scholar
  13. Kakavand-Ghalehnoei R, Shoja Z, Najafi A, Mollahoseini MH, Shahmahmoodi S, Marashi SM, Nejati A, Jalilvand S. 2016. Prevalence of human herpesvirus-8 among HIV-infected patients, intravenous drug users and the general population in Iran. Sex Health, 13: 295–298.PubMedGoogle Scholar
  14. Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. 1996. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med, 2: 918–924.PubMedGoogle Scholar
  15. Khajedaluee M, Babaei A, Vakili R, Valizade N, Homaei Shandiz F, Alavian SM, Seyed Nozadi M, Jazayeri SM, Hassannia T. 2016. Sero-Prevalence of Bloodborne Tumor Viruses (HCV, HBV, HTLV-I and KSHV Infections) and Related Risk Factors among Prisoners in Razavi Khorasan Province, Iran, in 2008. Hepat Mon, 16: e31541.PubMedPubMedCentralGoogle Scholar
  16. Larocca L, Leto D, Celesta BM, Maccarone S, Mazza C, Cacopardo B, Nigro L. 2005. Prevalence of antibodies to HHV-8 in the general population and in individuals at risk for sexually transmitted and blood-borne infections in Catania, Eastern Sicily. Infez Med, 13: 79–85.PubMedGoogle Scholar
  17. Lee YM, Chuang SY, Wang SF, Lin YT, Chen YMA. 2014. Epidemiology of human herpesvirus type 8 and parvovirus B19 infections and their association with HIV-1 among men who have sex with men and injection drug users in Taiwan. J Microbiol Immunol Infect, 47: 233–238.PubMedGoogle Scholar
  18. Liu Z, Fang Q, Zhou S, Minhas V, Wood C, He N, Zhang T. 2017a. Seroprevalence of Kaposi’s sarcoma-associated herpesvirus among HIV-infected Uygurs in Xinjiang, China. J Med Virol, 89: 1629–1635.PubMedGoogle Scholar
  19. Liu Z, Fang Q, Zuo J, Wang J, Chen Y, Minhas V, Wood C, He N, Zhang T. 2017b. High seroprevalence of human herpesvirus 8 and herpes simplex virus 2 infections in men who have sex with men in Shanghai, China. J Med Virol, 89: 887–894.PubMedGoogle Scholar
  20. Luo ML, Tan HZ, Zhou Q, Wang SY, Cai C, Guo YW, Shen L. 2013. Realizing the Meta-Analysis of Single Rate in R Software. EBM, 13: 181–184, 188. (In Chinse)Google Scholar
  21. Minhas V, Wood C. 2014. Epidemiology and transmission of Kaposi’s sarcoma-associated herpesvirus. Viruses, 6: 4178–4194.PubMedPubMedCentralGoogle Scholar
  22. Moore PS. 2000. The emergence of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). N Engl J Med, 343: 1411–1413.PubMedGoogle Scholar
  23. Parisi SG, Sarmati L, Pappagallo M, Mazzi R, Carolo G, Farchi F, Nicastri E, Concia E, Rezza G, Andreoni M. 2002. Prevalence trend and correlates of HHV-8 infection in HIV-infected patients. J Acquir Immune Defic Syndr, 29: 295–299.PubMedGoogle Scholar
  24. Perna AM, Bonura F, Vitale F, Viviano E, Di Benedetto MA, Ajello F, Villafrate MR, Prestileo T, Mancuso S, Goedert JJ, Romano N. 2000. Antibodies to human herpes virus type 8 (HHV8) in general population and in individuals at risk for sexually transmitted diseases in Western Sicily. Int J Epidemiol, 29: 175–179.PubMedGoogle Scholar
  25. Razonable RR. 2011. Rare, unusual, and less common virus infections after organ transplantation. Curr Opin Organ Transplant, 16: 580–587.PubMedGoogle Scholar
  26. Renwick N, Halaby T, Weverling GJ, Dukers NHTM, Simpson GR, Coutinho RA, Lange JMA, Schulz TF, Goudsmit J. 1998. Seroconversion for human herpesvirus 8 during HIV infection is highly predictive of Kaposi’s sarcoma. AIDS, 12: 2481–2488.PubMedGoogle Scholar
  27. Rezza G, Andreoni M, Dorrucci M, Pezzotti P, Monini P, Zerboni R, Salassa B, Colangeli V, Sarmati L, Nicastri E, Barbanera M, Pristera R, Aiuti F, Ortona L, Ensoli B. 1999. Human herpesvirus 8 seropositivity and risk of Kaposi’s sarcoma and other acquired immunodeficiency syndrome-related diseases. J Natl Cancer Inst, 91: 1468–1474.PubMedGoogle Scholar
  28. Rezza G, Lennette ET, Giuliani M, Pezzotti P, Caprilli F, Monini P, Butto S, Lodi G, Di Carlo A, Levy JA, Ensoli B. 1998. Prevalence and determinants of anti-lytic and anti-latent antibodies to human herpesvirus-8 among Italian individuals at risk of sexually and parenterally transmitted infections. Int J Cancer, 77: 361–365.PubMedGoogle Scholar
  29. Rohner E, Wyss N, Heg Z, Faralli Z, Mbulaiteye SM, Novak U, Zwahlen M, Egger M, Bohlius J. 2016. HIV and human herpesvirus 8 co-infection across the globe: Systematic review and meta-analysis. Int J Cancer, 138: 45–54.PubMedGoogle Scholar
  30. Schwartz RA. 2004. Kaposi’s sarcoma: an update. J Surg Oncol, 87: 146–151.PubMedGoogle Scholar
  31. Schwartz RA, Micali G, Nasca MR, Scuderi L. 2008. Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol, 59: 179–206.PubMedGoogle Scholar
  32. Simpson GR, Schulz TF, Whitby D, Cook PM, Boshoff C, Rainbow L, Howard MR, Gao SJ, Bohenzky RA, Simmonds P, Lee C, De Ruiter A, Hatzakis A, Tedder RS, Weller IVD, Weiss RA, Moore PS. 1996. Prevalence of Kaposi’s sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet, 349: 1133–1138.Google Scholar
  33. Sosa C, Benetucci J, Hanna C, Sieczkowski L, Deluchi G, Canizal AM, Mantina H, Klaskala W, Baum M, Wood C. 2001. Human Herpes virus 8 can be transmitted through blood in drug addicts. Medicina, 61: 291–294.PubMedGoogle Scholar
  34. Stiller CA, Trama A, Brewster DH, Verne J, Bouchardy C, Navarro C, Chirlaque MD, Marcos-Gragera R, Visser O, Serraino D, Weiderpass E, Dei Tos AP, Ascoli V. 2014. Descriptive epidemiology of Kaposi sarcoma in Europe. Report from the RARECARE project. Cancer Epidemiol, 38: 670–678.PubMedGoogle Scholar
  35. Syvertsen JL, Agot K, Ohaga S, Strathdee SA, Camlin CS, Omanga E, Odonde P, Rota G, Akoth K, Peng J, Wagner KD. 2015. Evidence of injection drug use in Kisumu, Kenya: Implications for HIV prevention. Drug Alcohol Depend, 151: 262–266.PubMedPubMedCentralGoogle Scholar
  36. Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E, Cusini M, Ruocco V, Katongole-Mbidde E, Loquercio G, Buonaguro L, Buonaguro FM. 2010. Human herpesvirus type 8 variants circulating in Europe, Africa and North America in classic, endemic and epidemic Kaposi’s sarcoma lesions during pre-AIDS and AIDS era. Virology, 398: 280–289.PubMedGoogle Scholar
  37. Vitale F, Viviano E, Perna AM, Bonura F, Mazzola G, Ajello F, Romano N. 2000. Serological and virological evidence of nonsexual transmission of human herpesvirus type 8 (HHV8). Epidemiol Infect, 125: 671–675.PubMedPubMedCentralGoogle Scholar
  38. Wang Y, Zhu B, Zhao X, Zhang X. 2000. Seroprevalence of Kaposi’s sarcoma associated herpesvirus infection among drug users. National Medical Journal of China, 80: 597–598. (In Chinese)Google Scholar
  39. Whitby D, Luppi M, Barozzi P, Boshoff C, Weiss RA, Torelli G. 1998. Human herpesvirus 8 seroprevalence in blood donors and lymphoma patients from different regions of Italy. J Natl Cancer Inst, 90: 395–397.PubMedGoogle Scholar
  40. Yang PR, Tan XH, Guo SX, Yang L. 2010. Research of Kaposi’s Sarcoma-associated herpesvirus in drug users in one city of Xinjiang. Modern Preventive Medicine, 37: 107–109. (In Chinese)Google Scholar
  41. Zavitsanou A, Malliori M, Sypsa V, Petrodaskalaki M, Psichogiou M, Rokka C, Giannopoulos A, Kalapothaki V, Whitby D, Hatzakis A. 2010. Seroepidemiology of human herpesvirus 8 (HHV-8) infection in injecting drug users. Epidemiol Infect, 138: 403–408.PubMedGoogle Scholar
  42. Zhang T, Liu Y, Zhang Y, Wang J, Minhas V, Wood C, He N. 2014a. Seroprevalence of human herpesvirus 8 and hepatitis C virus among drug users in Shanghai, China. Viruses, 6: 2519–2530.PubMedPubMedCentralGoogle Scholar
  43. Zhang T, Liu Z, Wang J, Minhas V, Wood C, Clifford GM, He N, Franceschi S. 2017. Seroprevalence of antibodies against Kaposi’s sarcoma-associated herpesvirus among HIV-negative people in China. Infect Agent Cancer, 12: 32.PubMedPubMedCentralGoogle Scholar
  44. Zhang T, Shao X, Chen Y, Zhang T, Minhas V, Wood C, He N. 2012. Human herpesvirus 8 seroprevalence, China. Emerg Infect Dis, 18: 150–152.PubMedPubMedCentralGoogle Scholar
  45. Zhang T, Wang L. 2017. Epidemiology of Kaposi’s sarcoma-associated herpesvirus in Asia: Challenges and opportunities. J Med Virol, 89: 563–570.PubMedGoogle Scholar
  46. Zhang T, Yang Y, Yu F, Zhao Y, Lin F, Minhas V, Wood C, He N. 2014b. Kaposi’s sarcoma associated herpesvirus infection among female sex workers and general population women in Shanghai, China: a cross-sectional study. BMC Infect Dis, 14: 58.PubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Public Health Safety, Fudan UniversityMinistry of EducationShanghaiChina
  3. 3.Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
  4. 4.Collaborative Innovation Center of Social Risks Governance in HealthFudan UniversityShanghaiChina

Personalised recommendations