Advertisement

Virologica Sinica

, Volume 32, Issue 4, pp 331–334 | Cite as

A practical approach to generate suitable de novo synthesis RNA template for a flavivirus RNA-dependent RNA polymerase

  • Wei Shi
  • Peng GongEmail author
Letter
  • 78 Downloads

Dear Editor,

Due to its high transcription efficiency, bacteriophage T7 RNA polymerase (T7 RNAP) has long been utilized in bacterial and in vitro systems to generate large quantity of RNA for various purposes ( Studier and Moffatt, 1986). However, heterogeneity at the 3′-end of the RNA transcript remains a major limitation for in vitro RNA preparation using T7 RNAP. When approaching the end of its DNA template, T7 RNAP tends to add a few extra nucleotides not directed by the template strand sequence, resulting in a mixture of RNA products that are equal to or longer than the desired length ( Milligan et al., 1987). Various strategies have been used to possibly overcome this limitation, such as introducing 2′-methoxy groups to the last two nucleotides at the 5′-terminus of the DNA template strand ( Kao et al., 1999), seeking other high-efficiency RNA polymerase ( Zhu et al., 2014), using a general purpose RNA-cleaving DNA enzyme ( Santoro and Joyce, 1997), or introducing a self-cleaving...

References

  1. Appleby TC, Perry JK, Murakami E, et al. 2015. Science, 347: 771–775.CrossRefGoogle Scholar
  2. Das U, Shuman S. 2013. Nucleic Acids Res, 41: 355–365.CrossRefGoogle Scholar
  3. Gong P, Peersen OB. 2010. Proc Natl Acad Sci U S A, 107: 22505–22510.CrossRefGoogle Scholar
  4. Kao CC, Singh P, Ecker DJ. 2001. Virology, 287: 251–260.CrossRefGoogle Scholar
  5. Kao C, Zheng M, Rudisser S. 1999. RNA, 5: 1268–1272.CrossRefGoogle Scholar
  6. Kieft JS, Batey RT. 2004. RNA, 10: 988–995.CrossRefGoogle Scholar
  7. Lu G, Gong P. 2013. PLoS Pathog, 9: e1003549.CrossRefGoogle Scholar
  8. Milligan JF, Groebe DR, Witherell GW, et al. 1987. Nucleic Acids Res, 15: 8783–8798.CrossRefGoogle Scholar
  9. Perrotta AT, Been MD. 1992. Biochemistry, 31: 16–21.CrossRefGoogle Scholar
  10. Santoro SW, Joyce GF. 1997. Proc Natl Acad Sci U S A, 94: 4262–4266.CrossRefGoogle Scholar
  11. Schurer H, Lang K, Schuster J, et al. 2002. Nucleic Acids Res, 30: e56.CrossRefGoogle Scholar
  12. Studier FW, Moffatt BA. 1986. J Mol Biol, 189: 113–130.CrossRefGoogle Scholar
  13. Walker SC, Avis JM, Conn GL. 2003. Nucleic Acids Res, 31: e82.CrossRefGoogle Scholar
  14. Wu J, Lu G, Zhang B, et al. 2015. J Virol, 89: 249–261.CrossRefGoogle Scholar
  15. Zhu B, Tabor S, Richardson CC. 2014. Nucleic Acids Res, 42: e33.CrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations