Virologica Sinica

, Volume 32, Issue 3, pp 216–225 | Cite as

Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase

  • Ran Xiao
  • Shan Li
  • Qian Cao
  • Xiuling Wang
  • Qiujin Yan
  • Xiaoning Tu
  • Ying Zhu
  • Fan ZhuEmail author
Research Article


Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter–nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.


human endogenous retrovirus W family (HERV-W) env nitric oxide (NO) inducible nitric oxide synthase (iNOS) neuropsychological disorders microglia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from the National Natural Sciences Foundation of China (No. 31470264, No. 81271820, No. 30870789, and No. 30300117), the Key Program of Natural Science Foundation of Hubei Province of China (No. 2014CFA078), the Stanley Foundation from the Stanley Medical Research Institute (SMRI), USA (No. 06R-1366), to Dr. Fan Zhu and the Scientific Innovation Team Project of Hubei Province of China (No. 2015CFA009).


  1. Adachi R, Matsui S, Kinoshita M, Nagaishi K, Sasaki H, Kasahara T, Suzuki K. 2000. Nitric oxide induces chemotaxis of neutrophil- like HL-60 cells and translocation of cofilin to plasma membranes. Int J Immunopharmacol, 22: 855–864.PubMedCrossRefGoogle Scholar
  2. Alderton WK, Cooper CE, Knowles RG. 2001. Nitric oxide synthases: structure, function and inhibition. Biochem J, 357: 593–615.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C. 2007. The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflamma-tion and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol, 179: 1210–1224.PubMedCrossRefGoogle Scholar
  4. Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C. 2004. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci, 7: 1088–1095.PubMedCrossRefGoogle Scholar
  5. Asiimwe N, Yeo SG, Kim MS, Jung J, Jeong NY. 2016. Nitric Oxide: Exploring the Contextual Link with Alzheimer’s Disease. Oxid Med Cell Longev, 2016: 7205747.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bao J, Zhu J, Luo S, Cheng Y, Zhou S. 2016. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis. Biochem Biophy Res Commun, 469: 1–7.CrossRefGoogle Scholar
  7. Bjerregaard B, Holck S, Christensen IJ, Larsson LI. 2006. Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci, 63: 1906–1911.PubMedCrossRefGoogle Scholar
  8. Brodsky I, Foley B, Gillespie D. 1993. Expression of human endogenous retrovirus (HERV-K) in chronic myeloid leukemia. Leuk Lymphoma, 11 Suppl 1: 119–123.CrossRefGoogle Scholar
  9. Clausen J. 2003. Endogenous retroviruses and MS: using ERVs as disease markers. Int MS J, 10: 22–28.PubMedGoogle Scholar
  10. Colton CA. 2009. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol, 4: 399–418.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Conrad B, Weissmahr RN, Boni J, Arcari R, Schupbach J, Mach B. 1997. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell, 90: 303–313.PubMedCrossRefGoogle Scholar
  12. Czeh M, Gressens P, Kaindl AM. 2011. The yin and yang of microglia. Dev Neurosci, 33: 199–209.PubMedCrossRefGoogle Scholar
  13. de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris SJ, Billiar TR, Geller DA. 1996. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci U S A, 93: 1054–1059.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Draheim HJ, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK. 1999. Induction of potassium channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience, 89: 1379–1390.PubMedCrossRefGoogle Scholar
  15. Dzoljic E, Grbatinic I, Kostic V. 2015. Why is nitric oxide important for our brain?. Funct Neurol, 30: 159–163.PubMedPubMedCentralGoogle Scholar
  16. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M, Rabreau M, Evain-Brion D, Mallet F. 2003. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol, 23: 3566–3574.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fuseler JW, Valarmathi MT. 2016. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol, 4: 133.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Galea E, Feinstein DL, Reis DJ. 1992. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A, 89: 10945–10949.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ghasemi M, Fatemi A. 2014. Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neuroscience & Biobehavioral Reviews, 45: 168–182.CrossRefGoogle Scholar
  20. Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K, Bouton O, Mallet F. 2010. Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res, 38: 2229–2246.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hanisch UK, Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci, 10: 1387–1394.PubMedCrossRefGoogle Scholar
  22. Huang W, Li S, Hu Y, Yu H, Luo F, Zhang Q, Zhu F. 2011. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull, 37: 988–1000.PubMedCrossRefGoogle Scholar
  23. Huang W, Liu Z, Wei W, Wang G, Wu J, Zhu F. 2006. Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res, 83: 193–199.PubMedCrossRefGoogle Scholar
  24. Jaffrey SR, Snyder SH. 1995. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol, 11: 417–440.PubMedCrossRefGoogle Scholar
  25. Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M. 1995. Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett, 195: 105–108.PubMedCrossRefGoogle Scholar
  26. Jern P, Sperber GO, Blomberg J. 2004. Definition and variation of human endogenous retrovirus H. Virology, 327: 93–110.PubMedCrossRefGoogle Scholar
  27. Karlsson H, Schroder J, Bachmann S, Bottmer C, Yolken RH. 2004. HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry, 9: 12–13.PubMedCrossRefGoogle Scholar
  28. Klegeris A, McGeer EG, McGeer PL. 2007. Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol, 20: 351–357.PubMedCrossRefGoogle Scholar
  29. Ko HM, Kim SY, Joo SH, Yang SI, Shin CY, Koo BN. 2013. Synergistic activation of lipopolsaccharide-stimulated glial cells by propofol. Biochem Biophys Res Commun, 438: 420–426.PubMedCrossRefGoogle Scholar
  30. Kumar S, Singh RK, Bhardwaj TR. 2017. Therapeutic role of nitric oxide as emerging molecule. Biomed Pharmacother, 85: 182–201.PubMedCrossRefGoogle Scholar
  31. Lefer AM, Lefer DJ. 1999. Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am J Physiol, 276: G572–G575.PubMedGoogle Scholar
  32. Li S, Liu ZC, Yin SJ, Chen YT, Yu HL, Zeng J, Zhang Q, Zhu F. 2013. Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB. Neuroscience, 247: 164–174.PubMedCrossRefGoogle Scholar
  33. Li H, Liu B, Huang J, Chen H, Guo X, Yuan Z. 2013. Insulin inhibits lipopolysaccharide-induced nitric oxide synthase expression in rat primary astrocytes. Brain Res, 1506: 1–11.PubMedCrossRefGoogle Scholar
  34. Li W, Yang F, Liu Y, Gong R, Liu L, Feng Y, Hu P, Sun W, Hao Q, Kang L, Wu J, Zhu Y. 2009. Negative feedback regulation of IL-32 production by iNOS activation in response to dsRNA or influenza virus infection.Google Scholar
  35. Eur J Immunol, 39: 1019–1024.Google Scholar
  36. Lu A, Wang L, Qian L. 2015. The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int, 39: 484–490.PubMedCrossRefGoogle Scholar
  37. Maeda T, Inagaki M, Fujita Y, Kimoto T, Tanabe-Fujimura C, Zou K, Liu J, Liu S, Komano H. 2016. ATP increases the migration of microglia across the brain endothelial cell monolayer. Biosci Rep, 36: e00318.CrossRefGoogle Scholar
  38. Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B. 2004. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci U S A, 101: 1731–1736.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, Sotgiu S, Bonetti B, Dolei A. 2007. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol, 88: 264–274.PubMedCrossRefGoogle Scholar
  40. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JJ, McCoy JM. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 403: 785–789.PubMedCrossRefGoogle Scholar
  41. Moussaud S, Lamodiere E, Savage C, Draheim HJ. 2009. Characterisation of K+ currents in the C8-B4 microglial cell line and their regulation by microglia activating stimuli. Cell Physiol Biochem, 24: 141–152.PubMedCrossRefGoogle Scholar
  42. Mustafa AK, Gadalla MM, Snyder SH. 2009. Signaling by gasotransmitters. Sci Signal, 2: e2.Google Scholar
  43. Nakagawa K, Brusic V, McColl G, Harrison LC. 1997. Direct evidence for the expression of multiple endogenous retroviruses in the synovial compartment in rheumatoid arthritis. Arthritis Rheum, 40: 627–638.PubMedCrossRefGoogle Scholar
  44. Nakamura T, Cho DH, Lipton SA. 2012. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol, 238: 12–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B. 1997. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A, 94: 7583–7588.CrossRefGoogle Scholar
  46. Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I, Fabriek BO, Van-Horssen J, Van-der-Valk P, Gerdil C, Mancuso R, Saresella M, Clerici M, Marcel S, Creange A, Cavaretta R, Caputo D, Arru G, Morand P, Lang AB, Sotgiu S, Ruprecht K, Rieckmann P, Villoslada P, Chofflon M, Boucraut J, Pelletier J, Hartung HP. 2012. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler, 18: 1721–1736.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Perron H, Lazarini F, Ruprecht K, Pechoux-Longin C, Seilhean D, Sazdovitch V, Creange A, Battail-Poirot N, Sibai G, Santoro L, Jolivet M, Darlix JL, Rieckmann P, Arzberger T, Hauw JJ, Lassmann H. 2005. Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol, 11: 23–33.PubMedCrossRefGoogle Scholar
  48. Qin C, Li S, Yan Q, Wang X, Chen Y, Zhou P, Lu M, Zhu F. 2016. Elevation of Ser9 phosphorylation of GSK3ß is required for HERV-W env-mediated BDNF signaling in human U251 cells. Neurosci Lett, 627: 84–91.PubMedCrossRefGoogle Scholar
  49. Saha RN, Pahan K. 2006. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal, 8: 929–947.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Saha RN, Pahan K. 2006b. Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int, 49: 154–163.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sang J, Chen Y, Tao Y. 2011. Nitric oxide inhibits gastric cancer cell growth through the modulation of the Akt pathway. Mol Med Rep, 4: 1163–1167.PubMedGoogle Scholar
  52. Scheiblich H, Roloff F, Singh V, Stangel M, Stern M, Bicker G. 2014. Nitric oxide/cyclic GMP signaling regulates motility of a microglial cell line and primary microglia in vitro. Brain Res, 1564: 9–21.PubMedCrossRefGoogle Scholar
  53. Seifarth W, Baust C, Murr A, Skladny H, Krieg-Schneider F, Blusch J, Werner T, Hehlmann R, Leib-Mosch C. 1998. Proviral structure, chromosomal location, and expression of HERV-KT47D, a novel human endogenous retrovirus derived from T47D particles. J Virol, 72: 8384–8391.PubMedPubMedCentralGoogle Scholar
  54. Shaikh SB, Uy B, Perera A, Nicholson LFB. 2012. AGEs-RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells. Neurochem Int, 60: 640–651.PubMedCrossRefGoogle Scholar
  55. Wallace JL. 2005. Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz, 100 Suppl 1: 5–9.CrossRefGoogle Scholar
  56. Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG, Chen DT, Lu DW, Barnhart KF, Johanning GL. 2007. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer, 120: 81–90.PubMedCrossRefGoogle Scholar
  57. Yolken RH, Torrey EF. 1995. Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev, 8: 131–145.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yu H, Liu T, Zhao Z, Chen Y, Zeng J, Liu S, Zhu F. 2014. Mutations in 3’-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene, 33: 3947–3958.PubMedCrossRefGoogle Scholar
  59. Yun HY, Dawson VL, Dawson TM. 1997. Nitric oxide in health and disease of the nervous system. Mol Psychiatry, 2: 300–310.PubMedCrossRefGoogle Scholar
  60. Zhang Z, Cao Z, Liu C, Li R, Wang W, Wang X. 2016. MiRNAEmbedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer. Plos One, 11: e163446.Google Scholar
  61. Zhou L, Zhang H, Wu J. 2016. Effects of nitric oxide on the biological behavior of HepG2 human hepatocellular carcinoma cells. Exp Ther Med, 11: 1875–1880.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Zhou Y, Zhao Y, Gao Y, Hu W, Qu Y, Lou N, Zhu Y, Zhang X, Yang H. 2017. Hepatitis C virus NS3 protein enhances hepatocellular carcinoma cell invasion by promoting PPM1A ubiquitination and degradation. J Exp Clin Cancer Res, 36: 42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Zhu T, Yao Q, Wang W, Yao H, Chao J. 2016. iNOS Induces Vascular Endothelial Cell Migration and Apoptosis Via Autophagy in Ischemia/Reperfusion Injury. Cell Physiol Biochem, 38: 1575–1588.PubMedCrossRefGoogle Scholar
  64. Zipp F, Aktas O. 2006. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci, 29: 518–527.PubMedCrossRefGoogle Scholar
  65. Zou F, Liu Y, Liu L, Wu K, Wei W, Zhu Y, Wu J. 2007. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RARa/RXRa heterodimer to a novel retinoic acid response element in the promoter. Biochem Biophys Res Commun, 355: 494–500.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Medical Microbiology, School of MedicineWuhan UniversityWuhanChina
  2. 2.Department of Integrated Medicine, Dongfeng HospitalHubei University of MedicineWuhanChina
  3. 3.Department of Neurology MedicineRenmin Hospital of Wuhan UniversityWuhanChina
  4. 4.The State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanChina
  5. 5.Hubei Province Key Laboratory of Allergy and ImmunologyWuhanChina

Personalised recommendations