Virologica Sinica

, Volume 32, Issue 3, pp 175–187 | Cite as

An update: Epstein-Barr virus and immune evasion via microRNA regulation

  • Lielian Zuo
  • Wenxin Yue
  • Shujuan Du
  • Shuyu Xin
  • Jing Zhang
  • Lingzhi Liu
  • Guiyuan Li
  • Jianhong LuEmail author


Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4+ and CD8+ T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.


Epstein-Barr virus (EBV) microRNAs immune evasion exosomes carcinogenesis 



Bcl-2-associated death promoter


Viral DNA polymerase gene


EBV immediate early gene


BIR repeat-containing ubiquitin-conjugating enzyme


EBV immediate early gene


CREB binding protein


Chemokine (C-C motif) ligand 17


Chemokine (C-C motif) ligand 22


Cathepsin B


CXC-chemokine ligand 11


DiGeorge syndrome chromosomal region 8


CD226 molecule


Early B-cell factor 1


Epstein-Barr virus nuclear antigens


Epstein-Barr virus nuclear antigen 1


Epstein-Barr virus nuclear antigen 2


Epstein-Barr virus nuclear antigen 3A/3C


Intercellular adhesion molecule


Lysosomal thiol reductase


















Interleukin-12 subunit beta




Interferon regulatory factor 3


Interferon regulatory factor 7




Latent membrane protein 1


Latent membrane protein 2A


Mucosa-associated lymphoid tissue lymphoma translocation protein 1


MHC class I polypeptide-related sequence A


Major histocompatibility complex class I-related chain B


N-myc downstream-regulated gene 1


Nod-like receptor protein 3


Transporter 2


Programmed cell death 1 ligand 1


PR domain zinc finger protein 1


A p53 upregulated modulator of apoptosis.



This work was supported by the National Natural Science Foundations of China (81372139, 31670171), the Hunan Provincial Natural Science Foundation of China (2015 JJ2149), and the Hunan Provincial Innovation Foundation for Postgraduates (CX2016B055).

Compliance with Ethics Guidelines

The authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Adams BD, Kasinski AL, Slack FJ. 2014. Aberrant regulation and function of microRNAs in cancer. Curr Biol, 24: R762–R776.PubMedPubMedCentralGoogle Scholar
  2. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Martin L, Moosmann A, Hammerschmidt W. 2016. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+T cells. Proc Natl Acad Sci U S A, 113: e6467–e6475.PubMedPubMedCentralGoogle Scholar
  3. Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L, Faggioni A, Presutti C, Trivedi P. 2010. Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene, 29: 1316–1328.PubMedGoogle Scholar
  4. Barth S, Meister G, Grasser FA. 2011. EBV-encoded miRNAs. Biochim Biophys Acta, 1809: 631–640.PubMedGoogle Scholar
  5. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jaker C, Hock J, Meister G, Grasser FA. 2008. Epstein-Barr virusencoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res, 36: 666–675.PubMedGoogle Scholar
  6. Bazot Q, Paschos K, Skalska L, Kalchschmidt JS, Parker GA, Allday MJ. 2015. Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2. PLoS Pathog, 11: e1005031.Google Scholar
  7. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. 2016. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell, 30: 836–848.PubMedPubMedCentralGoogle Scholar
  8. Bellot G., Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, and Vallette FM 2007. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ, 14: 785–794.PubMedGoogle Scholar
  9. Bernhardt K, Haar J, Tsai MH, Poirey R, Feederle R, Delecluse HJ. 2016. A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog. PLoS Pathog, 12: e1005405.Google Scholar
  10. Bitar A, De R, Melgar S, Aung KM, Rahman A, Qadri F, Wai SN, Shirin T, Hammarstrom ML. 2017. Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One, 12: e0173817.Google Scholar
  11. Buchan JR, Parker R. 2007. Molecular biology. The two faces of miRNA. Science, 318: 1877–1878.PubMedPubMedCentralGoogle Scholar
  12. Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, Wang S, Liu T, Cai H, Yao K, Li JL, Li X. 2015. Epstein-Barr virus-encoded micro RNA BART1 induces tumour metastasis by regulating PTENdependent pathways in nasopharyngeal carcinoma. Nat Commun, 2;6: 7353.Google Scholar
  13. Ceccarelli S, Visco V, Raffa S, Wakisaka N, Pagano JS, Torrisi MR. 2007. Epstein-Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int J Cancer, 121: 1494–1506.PubMedGoogle Scholar
  14. Chen X, Shi J, Zhong J, Huang Z, Luo X, Huang Y, Feng S, Shao J, Liu D. 2015. miR-1, regulated by LMP1, suppresses tumour growth and metastasis by targeting K-ras in nasopharyngeal carcinoma. Int J Exp Pathol, 96: 427–432.PubMedGoogle Scholar
  15. Chen YX, Man K, Ling GS, Chen Y, Sun BS, Cheng Q, Wong OH, Lo CK, Ng IO, Chan LC, Lau GK, Lin CL, Huang F, Huang FP. 2007. A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J Immunol, 179: 6009–6015.PubMedGoogle Scholar
  16. Cho KJ, Song J, Oh Y, Lee JE. 2015. MicroRNA-Let-7a regulates the function of microglia in inflammation. Mol Cell Neurosci, 68: 167–176.PubMedGoogle Scholar
  17. Choi H, Lee H, Kim SR, Gho YS, Lee SK. 2013. Epstein-Barr virusencoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol, 87: 8135–8144.PubMedPubMedCentralGoogle Scholar
  18. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. 2013. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol, 15: 201–213.PubMedPubMedCentralGoogle Scholar
  19. Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF, Kwong DL, Tsao SW, Jin DY. 2008. An Epstein-Barr virusencoded microRNA targets PUMA to promote host cell survival. J Exp Med, 205: 2551–2560.PubMedPubMedCentralGoogle Scholar
  20. De Clercq E, Li G. 2016. Approved Antiviral Drugs over the Past 50 Years. Clin Microbiol Rev, 29: 695–747.PubMedPubMedCentralGoogle Scholar
  21. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. 2000. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol, 1: 119–126.PubMedGoogle Scholar
  22. Ding L, Li L, Yang J, Zhou S, Li W, Tang M, Shi Y, Yi W, Cao Y. 2007. Latent membrane protein 1 encoded by Epstein-Barr virus induces telomerase activity via p16INK4A/Rb/E2F1 and JNK signaling pathways. J Med Virol, 79: 1153–1163.PubMedGoogle Scholar
  23. Dolken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M, Lieber D, Bailer SM, Hoffmann R, Ruzsics Z, Kremmer E, Pfeffer S, Zimmer R, Koszinowski UH, Grasser F, Meister G, Haas J. 2010. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe, 7: 324–334.PubMedGoogle Scholar
  24. Du ZM, Hu LF, Wang HY, Yan LX, Zeng YX, Shao JY, Ernberg I. 2011. Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS One, 6: e19137.Google Scholar
  25. Due H, Svendsen P, Bødker JS, Schmitz A, Bøgsted M, Johnsen HE, El-Galaly TC, Roug AS, Dybkær KF. 2016. miR-155 as a Biomarker in B-Cell Malignancies. Biomed Res Int, doi: 10.1155/2016/9513037.Google Scholar
  26. Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ, Bloemena E, Middeldorp JM. 2000. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol, 165: 663–670.PubMedGoogle Scholar
  27. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ., Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P, Perrotti D, Croce CM 2012. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA, 109: e2110–E2116.Google Scholar
  28. Forte E, Salinas RE, Chang C, Zhou T, Linnstaedt SD, Gottwein E, Jacobs C, Jima D, Li QJ, Dave SS, Luftig MA. 2012. The Epstein-Barr virus (EBV)-induced tumor suppressor micro RNA MiR-34a is growth promoting in EBV-infected B cells. J Virol, 86: 6889–6898.PubMedPubMedCentralGoogle Scholar
  29. Gourzones C, Gelin A, Bombik I, Klibi J, Vérillaud B, Guigay J, Lang P, Témam S, Schneider V, Amiel C, Baconnais S, Jimenez AS, Busson P. 2010. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J, 7: 271.PubMedPubMedCentralGoogle Scholar
  30. Haar J, Contrant M, Bernhardt K, Feederle R, Diederichs S, Pfeffer S, Delecluse HJ. 2016. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Res, 44: 1326–1341.PubMedGoogle Scholar
  31. Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O’Neill LA, Masters SL. 2012. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol, 189: 3795–3799.PubMedGoogle Scholar
  32. Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz EJHJ, Lebbink RJ. 2017. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. J Immunol, 198: 4062–4073.PubMedGoogle Scholar
  33. Huang WT, Lin CW. 2014. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol, 184: 1185–1197.PubMedGoogle Scholar
  34. Huye LE, Ning S, Kelliher M, Pagano JS. 2007. Interferon regulatory factor 7 is activated by a viral oncoprotein through RIPdependent ubiquitination. Mol Cell Biol, 27: 2910–2918.PubMedPubMedCentralGoogle Scholar
  35. Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K. 2010. Editing of Epstein-Barr virusencoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem, 285: 33358–33370.PubMedPubMedCentralGoogle Scholar
  36. Jia S, Zhai H, Zhao M. 2014. MicroRNAs regulate immune system via multiple targets. Discov Med, 18: 237–247.PubMedGoogle Scholar
  37. Jung YJ, Choi H, Kim H, Lee SK. 2014. MicroRNA miRBART20- 5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol, 88: 9027–9037.PubMedPubMedCentralGoogle Scholar
  38. Kanda T, Miyata M, Kano M, Kondo S, Yoshizaki T, Iizasa H. 2015. Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor. J Virol, 89: 2684–2697.PubMedGoogle Scholar
  39. Kang BW, Choi Y, Kwon OK, Lee SS, Chung HY, Yu W, Bae HI, Seo AN, Kang H, Lee SK, Jeon SW, Hur K, Kim JG. 2017. High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virusassociated gastric cancer. Oncotarget, 8: 14988–14994.PubMedPubMedCentralGoogle Scholar
  40. Kim DN, Lee SK. 2012. Biogenesis of Epstein-Barr virus microRNAs. Mol Cell Biochem, 365: 203–210.PubMedGoogle Scholar
  41. Kim H, Choi H, Lee SK. 2015. Epstein-Barr virus miR-BART20- 5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett, 356: 733–742.PubMedGoogle Scholar
  42. Komabayashi Y, Kishibe K, Nagato T, Ueda S, Takahara M, Harabuchi Y. 2014. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma. Am J Hematol, 89: 25–33.PubMedGoogle Scholar
  43. Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, Pan Q, He ML, Li XP. 2010a. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett, 299: 29–36.PubMedGoogle Scholar
  44. Li J, Fu R, Yang L, Tu W. 2015. miR-21 expression predicts prognosis in diffuse large B-cell lymphoma. Int J Clin Exp Pathol, 8: 15019–15024.PubMedPubMedCentralGoogle Scholar
  45. Li L, Chen XP, Li YJ. 2010b. MicroRNA-146a and human disease. Scand J Immunol, 71: 227–231.PubMedGoogle Scholar
  46. Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W, Cao Y. 2007. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res, 130: 275–280.PubMedGoogle Scholar
  47. Li P, Liu C, Yu Z, Wu M. 2016. New Insights into Regulatory T Cells: Exosome- and Non-Coding RNA-Mediated Regulation of Homeostasis and Resident Treg Cells. Front Immunol, 7: 574.PubMedPubMedCentralGoogle Scholar
  48. Lisnic VJ, Krmpotic A, Jonjic S. 2010. Modulation of natural killer cell activity by viruses. Curr Opin Microbiol, 13: 530–539.PubMedPubMedCentralGoogle Scholar
  49. Liu X, Li L, Pan F, Tian W. 2012. MICB polymorphism in a southern Chinese Han population: the identification of two new MICB alleles, MICB*005:06 and MICB*026. Hum Immunol, 73: 818–823.PubMedGoogle Scholar
  50. Liu X, Luo HN, Tian WD, Lu J, Li G, Wang L, Zhang B, Liang BJ, Peng XH, Lin SX, Peng Y, Li XP. 2013. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma. Cancer Biol Ther, 14: 1133–1142.PubMedPubMedCentralGoogle Scholar
  51. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD. 2007. Modulation of LMP1 protein expression by EBVencoded microRNAs. Proc Natl Acad Sci U S A, 104: 16164–16169.PubMedPubMedCentralGoogle Scholar
  52. Lung RW, Tong JH, Sung YM, Leung PS, Ng DC, Chau SL, Chan AW, Ng EK, Lo KW, To KF. 2009. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia, 11: 1174–1184.PubMedPubMedCentralGoogle Scholar
  53. Luo GG, Ou JH. 2015. Oncogenic viruses and cancer. Virol Sin, 30: 83–84.PubMedPubMedCentralGoogle Scholar
  54. Ma J, Nie K, Redmond D, Liu Y, Elemento O, Knowles DM, Tam W. 2016. EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis. Leukemia, 30: 594–604.PubMedGoogle Scholar
  55. Ma L, Deng X, Wu M, Zhang G, Huang J. 2014. Down-regulation of miRNA-204 by LMP-1 enhances CDC42 activity and facilitates invasion of EBV-associated nasopharyngeal carcinoma cells. FEBS Lett, 588: 1562–1570.PubMedGoogle Scholar
  56. Mansouri S, Pan Q, Blencowe BJ, Claycomb JM, Frappier L. 2014. Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer. J Virol, 88: 11166–11177.PubMedPubMedCentralGoogle Scholar
  57. Marquitz AR, Mathur A, Nam CS, Raab-Traub N. 2011. The Epstein- Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology, 412: 392–400.PubMedPubMedCentralGoogle Scholar
  58. Meckes DG, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N 2010. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A, 107: 20370–20375.PubMedPubMedCentralGoogle Scholar
  59. Miao BP, Zhang RS, Li M, Fu YT, Zhao M, Liu ZG, Yang PC. 2015. Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol, 12: 750–756.PubMedGoogle Scholar
  60. Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O. 2009. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe, 5: 376–385.PubMedGoogle Scholar
  61. Onnis A, Navari M, Antonicelli G, Morettini F, Mannucci S, De Falco G, Vigorito E, Leoncini L. 2012. Epstein-Barr nuclear antigen 1 induces expression of the cellular microRNA hsa-miR- 127 and impairing B-cell differentiation in EBV-infected memory B cells. New insights into the pathogenesis of Burkitt lymphoma. Blood Cancer J, 2: e84.Google Scholar
  62. Oussaief L, Fendri A, Chane-Woon-Ming B, Poirey R, Delecluse HJ, Joab I, Pfeffer S. 2015. Modulation of MicroRNA Cluster miR-183-96-182 Expression by Epstein-Barr Virus Latent Membrane Protein 1. J Virol, 89: 12178–12188.PubMedPubMedCentralGoogle Scholar
  63. Patel SA, Gooderham NJ. 2015. IL6 Mediates Immune and Colorectal Cancer Cell Cross-talk via miR-21 and miR-29b. Mol Cancer Res, 13: 1502–1508.PubMedGoogle Scholar
  64. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM. 2010. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A, 107: 6328–6333.PubMedPubMedCentralGoogle Scholar
  65. Piedade D, Azevedo-Pereira JM. 2016. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses, 8, doi: 10.3390/v8060156.PubMedCentralGoogle Scholar
  66. Poole E, Sinclair J. 2015. Sleepless latency of human cytomegalovirus. Med Microbiol Immunol, 204: 421–429.PubMedPubMedCentralGoogle Scholar
  67. Qu JQ, Yi HM, Ye X, Zhu JF, Yi H, Li LN, Xiao T, Yuan L, Li JY, Wang YY, Feng J, He QY, Lu SS, Xiao ZQ. 2015. MiRNA- 203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol Cancer Ther, 14: 2653–2664.PubMedGoogle Scholar
  68. Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, Wiertz EJ. 2015. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol, 391: 355–381.PubMedPubMedCentralGoogle Scholar
  69. Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. 2012. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency.Google Scholar
  70. EMBO J, 31: 2207–2221.Google Scholar
  71. Rosato P, Anastasiadou E, Garg N, Lenze D, Boccellato F, Vincenti S, Severa M, Coccia EM, Bigi R, Cirone M, Ferretti E, Campese AF, Hummel M, Frati L, Presutti C, Faggioni A, Trivedi P. 2012. Differential regulation of miR-21 and miR-146a by Epstein-Barr virus-encoded EBNA2. Leukemia, 26: 2343–2352.PubMedPubMedCentralGoogle Scholar
  72. Saba R, Sorensen DL, Booth SA. 2014. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol, 5: 578.PubMedPubMedCentralGoogle Scholar
  73. Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast RE, Mortazavi Y. 2015. Involvement of MicroRNA in TCell Differentiation and Malignancy. Int J Hematol Oncol Stem Cell Res, 9: 33–49.PubMedPubMedCentralGoogle Scholar
  74. Sheedy FJ. 2015. Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol, 6: 19.PubMedPubMedCentralGoogle Scholar
  75. Skalsky RL, Kang D, Linnstaedt SD, Cullen BR. 2014. Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol, 88: 1617–1635.PubMedPubMedCentralGoogle Scholar
  76. Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao Q, Li X, Chen P, Xiang B, Zhang W, Xiong F, Zhou Y, Zhou M, Ma J, Li Y, Chen X, Li G, Xiong W. 2016. Epstein-Barr virus encoded miRBART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget, 7: 36783–36799.PubMedPubMedCentralGoogle Scholar
  77. Sun X, Zhang J, Hou Z, Han Q, Zhang C, Tian Z. 2015. miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in anti-tumor immune suppression. Cell Cycle, 14: 243–252.PubMedPubMedCentralGoogle Scholar
  78. Sun Y, Cai J, Ma F, Lu P, Huang H, Zhou J. 2012. miR-155 mediates suppressive effect of progesterone on TLR3, TLR4-triggered immune response. Immunol Lett, 146: 25–30.PubMedGoogle Scholar
  79. Tagawa T AM, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W. 2016. Epstein-Barr viral miRNAs inhibit antiviral CD4+T cell responses targeting IL-12 and peptide processing. J Exp Med, 213: 15.Google Scholar
  80. Tang JF, Yu ZH, Liu T, Lin ZY, Wang YH, Yang LW, He HJ, Cao J, Huang HL, Liu G. 2014. Five miRNAs as novel diagnostic biomarker candidates for primary nasopharyngeal carcinoma. Asian Pac J Cancer Prev, 15: 7575–7581.PubMedGoogle Scholar
  81. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. 2014. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 289: 22258–22267.PubMedPubMedCentralGoogle Scholar
  82. Tsang CM, Tsao SW. 2015. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin, 30: 107–121.PubMedGoogle Scholar
  83. Verhoeven RJ, Tong S, Zhang G, Zong J, Chen Y, Jin DY. 2016. NF-kappaB Signaling Regulates Expression of Epstein-Barr Virus BART MicroRNAs and Long Noncoding RNAs in Nasopharyngeal Carcinoma., 90: 6475–6488.Google Scholar
  84. Wang Y, He D, Liang H, Yang D, Yue H, Zhang X, Wang R, Li B, Yang H, Liu Y, Chen Y, Duan Y, Zhang C, Chen X, Fu J. 2017. The identification of upregulated ebv-mir-BHRF1-2-5p targeting MALT1 and ebv-miR-BHRF1-3 in the circulation of patients with multiple sclerosis. Clin Exp Immunol, 2017 Jul; 189: 120–126.Google Scholar
  85. Xia T, O’Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, Ramos JC, Luz E, Pedroso C, Manrique M, Toomey NL, Brites C, Dittmer DP, Harrington WJ, 2008. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir- BHRF1-3. Cancer Res, 68: 1436–1442.PubMedPubMedCentralGoogle Scholar
  86. Yan Q, Zeng Z, Gong Z, Zhang W, Li X, He B, Song Y, Li Q, Zeng Y, Liao Q, Chen P, Shi L, Fan S, Xiang B, Ma J, Zhou M, Li X, Yang J, Xiong W, Li G. 2015. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget, 6: 41766–41782.PubMedPubMedCentralGoogle Scholar
  87. Yang F, Liu Q, Hu CM. 2015. Epstein-Barr virus-encoded LMP1 increases miR-155 expression, which promotes radioresistance of nasopharyngeal carcinoma via suppressing UBQLN1. Eur Rev Med Pharmacol Sci, 19: 4507–4515.PubMedPubMedCentralGoogle Scholar
  88. Yang GD, Huang TJ, Peng LX, Yang CF, Liu RY, Huang HB, Chu QQ, Yang HJ, Huang JL, Zhu ZY, Qian CN, Huang BJ. 2013. Epstein-Barr Virus_Encoded LMP1 upregulates micro RNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced Apoptosis by suppressing PDCD4 and Fas-L. PLoS One, 8: e78355.Google Scholar
  89. Yang IV, Wade CM, Kang HM, Alper S, Rutledge H, Lackford B, Eskin E, Daly MJ, and Schwartz DA. 2009. Identification of novel genes that mediate innate immunity using inbred mice. Genetics, 183: 1535–1544.PubMedPubMedCentralGoogle Scholar
  90. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, Wang HY, Cheng SQ, Xie D, Wang XF. 2012. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell, 22: 291–303.PubMedPubMedCentralGoogle Scholar
  91. Yang Y, Wu BQ, Wang YH, Shi YF, Luo JM, Ba JH, Liu H, Zhang TT. 2016. Regulatory effects of miR-155 and miR-146a on repolarization and inflammatory cytokine secretion in human alveolar macrophages in vitro. Immunopharmacol Immunotoxicol: 1–27.Google Scholar
  92. Yang Y, Zhou H, Li W, Zhou M, Zeng Z, Xiong W, Wu M, Huang H, Zhou Y, Peng C, Huang C, Li X, Li G. 2007. Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. Mol Immunol, 44: 984–992.PubMedGoogle Scholar
  93. Yin W, Ouyang S, Li Y, Xiao B, Yang H. 2013. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation, 36: 232–240.PubMedGoogle Scholar
  94. Young LS, Rickinson AB. 2004. Epstein-Barr virus: 40 years on. Nat Rev Cancer, 4: 757–768.PubMedGoogle Scholar
  95. Yu H, Lu J, Zuo L, Yan Q, Yu Z, Li X, Huang J, Zhao L, Tang H, Luo Z, Liao Q, Zeng Z, Zhang J, Li G. 2012. Epstein-Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol, 86: 3088–3099.PubMedPubMedCentralGoogle Scholar
  96. Yu P, Xiao L, Lin L, Tang L, Chen C, Wang F, Wang Y. 2016. STAT3-mediated TLR2/4 pathway upregulation in an IFNgamma- induced Chlamydia trachomatis persistent infection model. Pathog Dis, 74, doi: 10.1093/femspd/ftw076.PubMedGoogle Scholar
  97. Yu Z, Lu J, Yu H, Yan Q, Zuo L, Li G. 2011. A precise excision of the complete Epstein-Barr virus genome in a plasmid based on a bacterial artificial chromosome. J Virol Methods, 176: 103–107.PubMedGoogle Scholar
  98. Zeng FR, Tang LJ, He Y, Garcia RC. 2015. An update on the role of miRNA-155 in pathogenic microbial infections. Microbes Infect, 17: 613–621.PubMedGoogle Scholar
  99. Zeng L, Cui J, Wu H, Lu Q. 2014. The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity, 47: 419–429.PubMedGoogle Scholar
  100. Zhang G, Zong J, Lin S, Verhoeven RJ, Tong S, Chen Y, Ji M, Cheng W, Tsao SW, Lung M, Pan J, Chen H. 2015. Circulating Epstein-Barr virus microRNAs miR-BART7 and miR-BART13 as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. Int J Cancer, Mar 1;136(5): E301–E312.Google Scholar
  101. Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, Yang H, Zhou W, Li J. 2015a. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology, 144: 56–67.PubMedGoogle Scholar
  102. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. 2015b. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 13: 17–24.PubMedPubMedCentralGoogle Scholar
  103. Zhao Y, Chen X, Jing M, Du H, Zeng Y. 2012. Expression of miRNA-146a in nasopharyngeal carcinoma is upregulated by Epstein-Barr virus latent membrane protein 1. Oncol Rep, 28: 1237–1242.PubMedGoogle Scholar
  104. Zheng H, Li LL, Hu DS, Deng XY, Cao Y. 2007. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol, 4: 185–196.PubMedPubMedCentralGoogle Scholar
  105. Zheng XH, Lu LX, Cui C, Chen MY, Li XZ, Jia WH. 2016. Epstein-Barr virus mir-bart1-5p detection via nasopharyngeal brush sampling is effective for diagnosing nasopharyngeal carcinoma. Oncotarget, 7: 4972–4980.PubMedPubMedCentralGoogle Scholar
  106. Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai J, Xiao X, You Y, Zuo X. 2013. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol, 33: 1100–1109.PubMedGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Cancer Research Institute, School of Basic Medical SciencesCentral South UniversityChangshaChina
  3. 3.Department of Microbiology, School of Basic Medical SciencesCentral South UniversityChangshaChina

Personalised recommendations