Attenuated phenotypes and analysis of a herpes simplex virus 1 strain with partial deletion of the UL7, UL41 and LAT genes
- 184 Downloads
- 6 Citations
Abstract
We previously constructed a herpes simplex virus 1 (HSV-1) UL7 mutant virus (M1) and showed that a partial deletion mutation of the UL7 gene led to a lower proliferative rate and an attenuated phenotype. Using the M1 mutant, we further modified the UL41 gene, which encodes another tegument protein, and the latency-associated transcript (LAT) gene. Observations of the resulting mutants with modified UL7 and UL41 (M2) or UL7, UL41 and LAT (M3) genes indicated attenuated phenotypes, with lower proliferative ratios in various cells, non-lethal infections in mice and lower viral loads in nervous tissues compared with the wild-type strain. Furthermore, no LAT stable intron could be detected in the trigeminal ganglion of M3-infected animals. The results obtained with the three HSV-1 mutants indicate that the M3 mutant is an attenuated strain with low pathogenicity during both acute and latent infections. Together, the results support the use of the M3 mutant as a candidate for the development of an HSV-1 vaccine.
Keywords
herpes simplex virus 1 (HSV-1) UL7 UL41 LAT mutantNotes
Acknowledgments
This work was supported by the National Basic Research Program (2012CB518901), Chinese academy of medical sciences (CAMS) Initiative for Innovative Medicine (2016-I2M-1-019), the National Natural Science Foundation of China (31300143, 31100127), and the Fundamental Research Funds for the Central Universities (2016ZX310047, 2016ZX350072). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Contributions
QHL designed the experiments; XLX, STF, PFC, LCW and XLZ performed the experiments; XLX, YZ and YL performed the analyses; XLX and MF wrote the manuscript; YQG completed the majority of the manuscript revisions and refined the English used in the manuscript, and all of the authors contributed to, read, and approved the final version of the manuscript.
Compliance with Ethics Guidelines
The authors declare that they have no conflict of interest. The experimental protocols were reviewed and approved by the Yunnan Provincial Experimental Animal Management Association (approval number: SCXK [Dian] 2011–0005) and the Experimental Animal Ethics Committee of the Institute of Medical Biology, Chinese Academy of Medical Sciences. The animal experiments were designed based on the principles expressed in the “Guide for the Care and Use of Laboratory Animals” and “Guidance for Experimental Animal Welfare and Ethical Treatment.” All institutional and national guidelines for the care and use of laboratory animals were followed.
Supplementary material
References
- Aranda AM, Epstein AL. 2015. Herpes simplex virus type 1 latency and reactivation: an update. Med Sci (Paris), 31: 506–514.CrossRefGoogle Scholar
- Augustinova H, Hoeller D, Yao F. 2004. The dominant-negative herpes simplex virus type 1 (HSV-1) recombinant CJ83193 can serve as an effective vaccine against wild-type HSV-1 infection in mice. J Virol, 78: 5756–5765.CrossRefGoogle Scholar
- Awasthi S, Lubinski JM, Eisenberg RJ, Cohen GH, Friedman HM. 2008. An HSV-1 gD mutant virus as an entry-impaired live virus vaccine. Vaccine, 26: 1195–1203.CrossRefGoogle Scholar
- BenMohamed L, Osorio N, Srivastava R, Khan AA, Simpson JL, Wechsler SL. 2015. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation. J Neurovirol, 21: 508–517.CrossRefGoogle Scholar
- Brehm M, Samaniego LA, Bonneau RH, DeLuca NA, Tevethia SS. 1999. Immunogenicity of herpes simplex virus type 1 mutants containing deletions in one or more alpha-genes: ICP4, ICP27, ICP22, and ICP0. Virology, 256: 258–269.CrossRefGoogle Scholar
- Cotter CR, Nguyen ML, Yount JS, López CB, Blaho JA, Moran TM. 2010. The virion host shut-off (vhs) protein blocks a TLRindependent pathway of herpes simplex virus type 1 recognition in human and mouse dendritic cells. PLoS One, 5: e8684.CrossRefGoogle Scholar
- David AT, Saied A, Charles A, Subramanian R, Chouljenko VN, Kousoulas KG. 2012. A herpes simplex virus 1 (McKrae) mutant lacking the glycoprotein K gene is unable to infect via neuronal axons and egress from neuronal cell bodies. MBio, 3(e00144-e00112): e00144–00112.PubMedPubMedCentralGoogle Scholar
- Dumitrascu OM, Mott KR, Ghiasi H. 2014. A comparative study of experimental mouse models of central nervous system demyelination. Gene Ther, 21: 599–608.CrossRefGoogle Scholar
- Farrell MJ, Dobson AT, Feldman LT. 1991. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci USA, 88: 790–794.CrossRefGoogle Scholar
- Fatahzadeh M, Schwartz RA. 2007. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol, 57: 737–63; quiz 764.CrossRefGoogle Scholar
- Garland SM, Steben M. 2014. Genital herpes. Best Pract Res Clin Obstet Gynaecol, 28: 1098–1110.CrossRefGoogle Scholar
- Herrera FJ, Triezenberg SJ. 2004. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol, 78: 9689–9696.CrossRefGoogle Scholar
- Johnston C, Gottlieb SL, Wald A. 2016. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine, 34: 2948–2952.CrossRefGoogle Scholar
- Kelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. 2009. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res, 145: 173–186.CrossRefGoogle Scholar
- Koelle DM, Corey L. 2003. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev, 16: 96–113.CrossRefGoogle Scholar
- Kukhanova MK, Korovina AN, Kochetkov SN. 2014. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc), 79: 1635–1652.CrossRefGoogle Scholar
- Lee K, Kolb AW, Larsen I, Craven M, Brandt CR. 2016. Mapping murine corneal neovascularization and weight loss virulence determinants in the herpes simplex virus 1 genome and the detection of an epistatic interaction between the UL and IRS/US regions. J Virol, 90: 8115–8131.CrossRefGoogle Scholar
- Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA. 1989. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from thelatent state with reduced frequency. J Virol, 63: 2893–2900.PubMedPubMedCentralGoogle Scholar
- Looker KJ, Magaret AS, May MT, Turner KM, Vickerman P, Gottlieb SL, Newman LM. 2015. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS One, 10: e0140765.CrossRefGoogle Scholar
- Loret S, Lippé R. 2012. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol, 93: 624–634.CrossRefGoogle Scholar
- Maggioncalda J, Mehta A, Fraser NW, Block TM. 1994. Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5′ end of the 2. 0-kilobase TranScript. J Virol, 68: 7816–7824.PubMedGoogle Scholar
- Morrison LA, Knipe DM. 1997. Contributions of antibody and T cell subsets to protection elicited by immunization with a replication-defective mutant of herpes simplex virus type 1. Virology, 239: 315–326.CrossRefGoogle Scholar
- Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. 2011. Recognition of herpesviruses by the innate immune system. Nat Rev Immunol, 11: 143–154.CrossRefGoogle Scholar
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8: 2281–2308.CrossRefGoogle Scholar
- Read GS, Karr BM, Knight K. 1993. Isolation of a herpes simplex virus type 1 mutant with a deletion in the virion host shutoff gene and identification of multiple forms of the vhs (UL41) polypeptide. J Virol, 67: 7149–7160.PubMedPubMedCentralGoogle Scholar
- Saffran HA, Read GS, Smiley JR. 2010. Evidence for translational regulation by the herpes simplex virus virion host shutoff protein. J Virol, 84: 6041–6049.CrossRefGoogle Scholar
- Samady L, Costigliola E, MacCormac L, McGrath Y, Cleverley S, Lilley CE, Smith J, Latchman DS, Chain B, Coffin RS. 2003. Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs-HSV vectors for dendritic cellmediated immunotherapy. J Virol, 77: 3768–3776.CrossRefGoogle Scholar
- Samoto K, Perng GC, Ehtesham M, Liu Y, Wechsler SL, Nesburn AB, Black KL, Yu JS. 2001. A herpes simplex virus type 1 mutant deleted for gamma34.5 and LAT kills glioma cells in vitro and is inhibited for in vivo reactivation. Cancer Gene Ther, 8: 269–277.CrossRefGoogle Scholar
- Sawtell NM, Triezenberg SJ, Thompson RL. 2011. VP16 serine 375 is a critical determinant of herpes simplex virus exit from latency in vivo. J Neurovirol, 17: 546–551.CrossRefGoogle Scholar
- Stanfield B, Kousoulas KG. 2015. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. Curr Clin Microbiol Rep, 2: 125–136.CrossRefGoogle Scholar
- Strain AK, Rice SA. 2011. Phenotypic suppression of a herpes simplex virus 1 ICP27 mutation by enhanced transcription of the mutant gene. J Virol, 85: 5685–5690.CrossRefGoogle Scholar
- Tanaka M, Sata T, Kawaguchi Y. 2008. The product of the herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2. Virol J, 5: 125.CrossRefGoogle Scholar
- Thompson RL, Sawtell NM. 1997. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol, 71: 5432–5440.PubMedPubMedCentralGoogle Scholar
- Wagner EK, Flanagan WM, Devi-Rao G, Zhang YF, Hill JM, Anderson KP, Stevens JG. 1988. The herpes simplex virus latencyassociated transcript is spliced during the latent phase of infection. J Virol, 62: 4577–4585.PubMedPubMedCentralGoogle Scholar
- Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE. 2006. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA, 296: 964–973.CrossRefGoogle Scholar
- Xu X, Che Y, Li Q. 2016a. HSV-1 tegument protein and the development of its genome editing technology. Virol J, 13: 108.CrossRefGoogle Scholar
- Xu X, Fan S, Zhou J, Zhang Y, Che Y, Cai H, Wang L, Guo L, Liu L, Li Q. 2016b. The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of alpha-4 gene transcription. Virol J, 13: 152.CrossRefGoogle Scholar
- Yu X, Liu L, Wu L, Wang L, Dong C, Li W, Li Q. 2010. Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. Biochimie, 92: 1024–1030.CrossRefGoogle Scholar