Virologica Sinica

, Volume 32, Issue 1, pp 23–31 | Cite as

Recent advances in the identification of the host factors involved in dengue virus replication

  • Yi Wang
  • Ping ZhangEmail author


Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.


dengue virus (DENV) host factors replication proteins miRNAs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (81371794) and Guangdong Natural Science Foundation (2014A030311007).


  1. Acosta EG, Castilla V, Damonte EB. 2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol, 89: 474–484.CrossRefPubMedGoogle Scholar
  2. Acosta EG, Kumar A, Bartenschlager R. 2014. Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv Virus Res, 88: 1–109.CrossRefPubMedGoogle Scholar
  3. Agis-Juarez RA, Galvan I, Medina F, Daikoku T, Padmanabhan R, Ludert JE, del Angel RM. 2009. Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol, 90: 2893–2901.CrossRefPubMedGoogle Scholar
  4. Aloia AL, Abraham AM, Bonder CS, Pitson SM, Carr JM. 2015. Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs. Mediators Inflamm, 2015: 509306.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borrego F. 2013. The CD300 molecules: an emerging family of regulators of the immune system. Blood, 121: 1951–1960.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. 2010. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer, 17: F19–36.CrossRefPubMedGoogle Scholar
  7. Brasier AR, Zhao Y, Wiktorowicz JE, Spratt HM, Nascimento EJM, Cordeiro MT, Soman KV, Ju H, Recinos A, Stafford S, Wu Z, Marques ETA, Vasilakis N. 2015. Molecular classification of outcomes from dengue virus -3 infections. J Clin Virol, 64: 97–106.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brunetti JE, Scolaro LA, Castilla V. 2015. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication. Virus Res, 203: 84–91.CrossRefPubMedGoogle Scholar
  9. Carnec X, Meertens L, Dejarnac O, Perera-Lecoin M, Hafirassou ML, Kitaura J, Ramdasi R, Schwartz O, Amara A. 2015. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection. J Virol, 90: 92–102.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carolin S, Pompea Z, Jacopo V, Carla S, Delia R, Gloria T, Elisabetta R, Anthony AJ, Eligio P, Guido A. 2010. Differential expression of interferon-induced microRNAs in patients with chronic hepatitis C virus infection treated with pegylated interferon alpha. Virol J, 7: 311.CrossRefGoogle Scholar
  11. Casseb SM, Simith DB, Melo KF, Mendonca MH, Santos AC, Carvalho VL, Cruz AC, Vasconcelos PF. 2016. Drosha, DGCR8, and Dicer mRNAs are down-regulated in human cells infected with dengue virus 4, and play a role in viral pathogenesis. Genet Mol Res, 15: gmr.15027891.CrossRefGoogle Scholar
  12. Castillo JA, Castrillon JC, Diosa-Toro M, Betancur JG, StLaurent G, 3rd, Smit JM, Urcuqui-Inchima S. 2016. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis, 16: 29.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen X, Xia J, Zhao Q, Wang Y, Liu J, Feng L, He J, Zhang P. 2015. Eukaryotic initiation factor 4AI interacts with NS4A of Dengue virus and plays an antiviral role. Biochem Biophys Res Commun, 461: 148–153.CrossRefPubMedGoogle Scholar
  14. Daugaard M, Rohde M, Jaattela M. 2007. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett, 581: 3702–3710.CrossRefPubMedGoogle Scholar
  15. Diamond MS, Pierson TC. 2015. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell, 162: 488–492.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell, 141: 668–681.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Escalera-Cueto M, Medina-Martinez I, del Angel RM, Berumen-Campos J, Gutierrez-Escolano AL, Yocupicio-Monroy M. 2015. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res, 196: 105–112.CrossRefPubMedGoogle Scholar
  18. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. 2010. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One, 5: e10843.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Green AM, Beatty PR, Hadjilaou A, Harris E. 2014. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol, 426: 1148–1160.CrossRefPubMedGoogle Scholar
  20. Gu J, Hu W, Wu J, Zheng P, Chen M, James AA, Chen X, Tu Z. 2013. miRNA Genes of an Invasive Vector Mosquito, Aedes albopictus. PLoS One, 8: e67638.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gubler DJ. 1998. Dengue and Dengue Hemorrhagic Fever. Clin Microbiol Rev, 11: 480–496.PubMedPubMedCentralGoogle Scholar
  22. Han SP, Tang YH, Smith R. 2010. Functional diversity of the hnRNPs: past, present and perspectives. Biochem J, 430: 379–392.CrossRefPubMedGoogle Scholar
  23. Hidari KI, Suzuki T. 2011. Dengue virus receptor. Trop Med Health, 39: 37–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huerta V, Toledo P, Fleitas N, Martin A, Pupo D, Yero A, Sarria M, Sanchez A, Besada V, Ramos Y, Marquez G, Guirola O, Chinea G. 2014. Receptor-activated human alpha2-macroglobulin interacts with the envelope protein of dengue virus and protects virions from temperature-induced inactivation through multivalent binding. J Gen Virol, 95: 2668–2676.CrossRefPubMedGoogle Scholar
  25. Iglesias NG, Mondotte JA, Byk LA, De Maio FA, Samsa MM, Alvarez C, Gamarnik AV. 2015. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets. Traffic, 16: 962–977.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kakumani PK, Medigeshi GR, Kaur I, Malhotra P, Mukherjee SK, Bhatnagar RK. 2016. Role of human GRP75 in miRNA mediated regulation of dengue virus replication. Gene, 586: 7–11.CrossRefPubMedGoogle Scholar
  27. Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. 2013. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol, 87: 8870–8883.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Krishnan MN, Garcia-Blanco MA. 2014. Targeting host factors to treat West Nile and dengue viral infections. Viruses, 6: 683–708.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li G, Feng T, Pan W, Shi X, Dai J. 2015. DEAD-box RNA helicase DDX3X inhibits DENV replication via regulating type one interferon pathway. Biochem Biophys Res Commun, 456: 327–332.CrossRefPubMedGoogle Scholar
  30. Liu B, Li NL, Wang J, Shi PY, Wang T, Miller MA, Li K. 2014. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J Virol, 88: 13821–13835.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, Abraham S, Choi JG, Shi G, Qi L, Manjunath N, Wu H. 2015. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Rep, 12: 673–683.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature, 535: 159–163.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Marques RE, Guabiraba R, Del Sarto JL, Rocha RF, Queiroz AL, Cisalpino D, Marques PE, Pacca CC, Fagundes CT, Menezes GB, Nogueira ML, Souza DG, Teixeira MM. 2015. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology, 145: 583–596.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, Lemke G, Schwartz O, Amara A. 2012. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 12: 544–557.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Michael JI, Salvatore Vp. 1981. Clearance and Binding of Two Electrophoretic “Fast” Forms of Human a2-Macroglobulin. J Biol Chem, 256: 8134–8139.Google Scholar
  36. Miesen P, Ivens A, Buck AH, van Rij RP. 2016. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs. PLoS Negl Trop Dis, 10: e0004452.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oppermann M. 2004. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal, 16: 1201–1210.CrossRefPubMedGoogle Scholar
  38. Oshiumi H, Sakai K, Matsumoto M, Seya T. 2010. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol, 40: 940–948.CrossRefPubMedGoogle Scholar
  39. Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol, 80: 1895–1903.CrossRefPubMedGoogle Scholar
  40. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. 2007. Interferon modulation of cellular micro RNAs as an antiviral mechanism. Nature, 449: 919–922.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Perreira JM, Aker AM, Savidis G, Chin CR, McDougall WM, Portmann JM, Meraner P, Smith MC, Rahman M, Baker RE, Gauthier A, Franti M, Brass AL. 2015. RNASEK Is a V-ATP ase-Associated Factor Required for Endocytosis and the Replication of Rhinovirus, Influenza A Virus, and Dengue Virus. Cell Rep, 12: 850–863.CrossRefPubMedGoogle Scholar
  42. Rajsbaum R, Garcia-Sastre A, Versteeg GA. 2014. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol, 426: 1265–1284.CrossRefPubMedGoogle Scholar
  43. Ramaen O, Joubert A, Simister P, Belgareh-Touze N, Olivares-Sanchez MC, Zeeh JC, Chantalat S, Golinelli-Cohen MP, Jackson CL, Biou V, Cherfils J. 2007. Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors. J Biol Chem, 282: 28834–28842.CrossRefPubMedGoogle Scholar
  44. Repeke CE, Ferreira SB, Jr., Claudino M, Silveira EM, de Assis GF, Avila-Campos MJ, Silva JS, Garlet GP. 2010. Evidences of the cooperative role of the chemokines CCL3, CCL4 and CCL5 and its receptors CCR1+ and CCR5+ in RANKL+ cell migration throughout experimental periodontitis in mice. Bone, 46: 1122–1130.CrossRefPubMedGoogle Scholar
  45. Rocak S, Linder P. 2004. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol, 5: 232–241.CrossRefPubMedGoogle Scholar
  46. Rusca N, Monticelli S. 2011. MiR-146a in Immunity and Disease. Mol Biol Int, 2011: 437301.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Salazar MI, del Angel RM, Lanz-Mendoza H, Ludert JE, Pando-Robles V. 2014. The role of cell proteins in dengue virus infection. J Proteomics, 111: 6–15.CrossRefPubMedGoogle Scholar
  48. Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. 2012. Uncoupling cis-Acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J Virol, 86: 1046–1058.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL. 2016. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Rep, 16: 232–246.CrossRefPubMedGoogle Scholar
  50. Tambyah PA, Ching CS, Sepramaniam S, Ali JM, Armugam A, Jeyaseelan K. 2016. MicroRNA expression in blood of dengue patients. Ann Clin Biochem, 53: 466–476.CrossRefPubMedGoogle Scholar
  51. Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC. 2016. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep, 6: 32176.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang H, Kim S, Ryu WS. 2009. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol, 83: 5815–5824.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wei L, Natalie R-S, Christopher GP, Graham JB. 2001. Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identi¢cation of the eIF4AI cleavage site. FEBS Lett, 507: 1–5.CrossRefGoogle Scholar
  54. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe, 5: 365–375.CrossRefPubMedGoogle Scholar
  55. Wu N, Gao N, Fan D, Wei J, Zhang J, An J. 2014. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes Infect, 16: 911–922.CrossRefPubMedGoogle Scholar
  56. Wu S, He L, Li Y, Wang T, Feng L, Jiang L, Zhang P, Huang X. 2013. miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J Infect, 67: 329–341.CrossRefPubMedGoogle Scholar
  57. You J, Hou S, Malik-Soni N, Xu Z, Kumar A, Rachubinski RA, Frappier L, Hobman TC. 2015. Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling. J Virol, 89: 12349–12361.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319: 1834–1837.CrossRefPubMedGoogle Scholar
  59. Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. 2010. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog, 6: e1001131.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature, 535: 164–168.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhou Y, Liu Y, Yan H, Li Y, Zhang H, Xu J, Puthiyakunnon S, and Chen X. 2014. miR-281, an abundant midgut-specific miRNA of the vector mosquitoAedes albopictusenhances dengue virus replication. Parasites Vectors, 7: 488.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhu X, He Z, Hu Y, Wen W, Lin C, Yu J, Pan J, Li R, Deng H, Liao S, Yuan J, Wu J, Li J, Li M. 2014. MicroRNA-30e* Suppresses Dengue Virus Replication by Promoting NF-kB-Dependent IFN Production. PLOS Neglected Tropical Diseases, 8: e3088.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Immunology, Institute of Human Virology, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  2. 2.Key Laboratory of Tropical Diseases Control (Sun Yat-sen University)Ministry of EducationGuangzhouChina

Personalised recommendations