Virologica Sinica

, Volume 32, Issue 1, pp 44–50 | Cite as

Entry of severe fever with thrombocytopenia syndrome virus

  • Fei YuanEmail author
  • Aihua Zheng


Severe fever with thrombocytopenia syndrome virus (SFTSV) is a globe-shaped virus covered by a dense icosahedral array of glycoproteins Gn/Gc that mediate the attachment of the virus to host cells and the fusion of viral and cellular membranes. Several membrane factors are involved in virus entry, including C-type lectins and nonmuscle myosin heavy chain IIA. The post-fusion crystal structure of the Gc protein suggests that it is a class II membrane fusion protein, similar to the E/E1 protein of flaviviruses and alphaviruses. The virus particles are internalized into host cell endosomes through the clathrin-dependent pathway, where the low pH activates the fusion of the virus with the cell membrane. With information from studies on other bunyaviruses, herein we will review our knowledge of the entry process of SFTSV.


severe fever with thrombocytopenia syndrome virus (SFTSV) bunyavirus entry fusion receptor 



This work was funded by the National Key Plan for Scientific Research and Development of China (2016YFD0500300), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB11030800), and the Natural Science Foundation of China (L1524009).

Compliance with Ethics Guidelines

The authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Antic D, Wright KE, Kang CY. 1992. Maturation of Hantaan virus glycoproteins G1 and G2. Virology, 189: 324–328.PubMedGoogle Scholar
  2. Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. 2010. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature, 467: 859–862.PubMedGoogle Scholar
  3. Cifuentes-Munoz N, Salazar-Quiroz N, Tischler ND. 2014. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses, 6: 1801–1822.PubMedPubMedCentralGoogle Scholar
  4. de Boer SM, Kortekaas J, de Haan CA, Rottier PJ, Moormann RJ, Bosch BJ. 2012. Heparan sulfate facilitates Rift Valley fever virus entry into the cell. J Virol, 86: 13767–13771.PubMedPubMedCentralGoogle Scholar
  5. Denic S, Janbeih J, Nair S, Conca W, Tariq WU, Al-Salam S. 2011. Acute Thrombocytopenia, Leucopenia, and Multiorgan Dysfunction: The First Case of SFTS Bunyavirus outside China? Case Rep Infect Dis, 2011: 204056.PubMedPubMedCentralGoogle Scholar
  6. Dessau M, Modis Y. 2013. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci U S A, 110: 1696–1701.PubMedPubMedCentralGoogle Scholar
  7. Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y. 2002. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol, 168: 2118–2126.PubMedGoogle Scholar
  8. Garry CE, Garry RF. 2004. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model, 1: 10.PubMedPubMedCentralGoogle Scholar
  9. Gerrard SR, Nichol ST. 2002. Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J Virol, 76: 12200–12210.PubMedPubMedCentralGoogle Scholar
  10. Gerrard SR, Nichol ST. 2007. Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology, 357: 124–133.PubMedGoogle Scholar
  11. Gibbons DL, Vaney M-C, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA. 2004. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature, 427: 320–325.PubMedGoogle Scholar
  12. Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. 2016. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A, 113: 7154–7159.PubMedPubMedCentralGoogle Scholar
  13. Heijink AM, Blomen VA, Bisteau X, Degener F, Matsushita FY, Kaldis P, Foijer F, van Vugt MA. 2015. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proc Natl Acad Sci U S A, 112: 15160–15165.PubMedPubMedCentralGoogle Scholar
  14. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. 2013. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol, 87: 4384–4394.PubMedPubMedCentralGoogle Scholar
  15. Hollidge BS, Nedelsky NB, Salzano MV, Fraser JW, Gonzalez-Scarano F, Soldan SS. 2012. Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J Virol, 86: 7988–8001.PubMedPubMedCentralGoogle Scholar
  16. Huiskonen JT, Overby AK, Weber F, Grunewald K. 2009. Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J Virol, 83: 3762–3769.PubMedPubMedCentralGoogle Scholar
  17. Jin C, Liang M, Ning J, Gu W, Jiang H, Wu W, Zhang F, Li C, Zhang Q, Zhu H, Chen T, Han Y, Zhang W, Zhang S, Wang Q, Sun L, Liu Q, Li J, Wang T, Wei Q, Wang S, Deng Y, Qin C, Li D. 2012. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci U S A, 109: 10053–10058.PubMedPubMedCentralGoogle Scholar
  18. Kielian M, Chanel-Vos C, Liao M. 2010. Alphavirus entry and membrane fusion. Viruses, 2: 796–825.PubMedPubMedCentralGoogle Scholar
  19. Kielian M, Rey FA. 2006. Virus membrane fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol, 4: 67–76.PubMedGoogle Scholar
  20. Kuismanen E. 1984. Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J Virol, 51: 806–812.PubMedPubMedCentralGoogle Scholar
  21. Liu J, Thorp SC. 2002. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev, 22: 1–25.PubMedGoogle Scholar
  22. Liu Q, He B, Huang SY, Wei F, Zhu XQ. 2014. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis, 14: 763–772.PubMedGoogle Scholar
  23. Liu S, Chai C, Wang C, Amer S, Lv H, He H, Sun J, Lin J. 2014. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol, 24: 90–102.PubMedGoogle Scholar
  24. Lober C, Anheier B, Lindow S, Klenk HD, Feldmann H. 2001. The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology, 289: 224–229.PubMedGoogle Scholar
  25. Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A. 2011. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe, 10: 75–88.PubMedGoogle Scholar
  26. Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. 2010. Entry of bunyaviruses into mammalian cells. Cell Host Microbe, 7: 488–499.PubMedGoogle Scholar
  27. Madoff DH, Lenard J. 1982. A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of LaCrosse virus. Cell, 28: 821–829.PubMedGoogle Scholar
  28. Marklewitz M, Handrick S, Grasse W, Kurth A, Lukashev A, Drosten C, Ellerbrok H, Leendertz FH, Pauli G, Junglen S. 2011. Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. J Virol, 85: 9227–9234.PubMedPubMedCentralGoogle Scholar
  29. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST. 2012. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med, 367: 834–841.PubMedGoogle Scholar
  30. Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature, 427: 313–319.PubMedGoogle Scholar
  31. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Despres P. 2003. Dendriticcell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cellderived dengue viruses. EMBO Rep, 4: 723–728.PubMedPubMedCentralGoogle Scholar
  32. Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C. 2005. Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol, 79: 10852–10863.PubMedPubMedCentralGoogle Scholar
  33. Overby AK, Pettersson RF, Grunewald K, Huiskonen JT. 2008. Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proc Natl Acad Sci U S A, 105: 2375–2379.PubMedPubMedCentralGoogle Scholar
  34. Overby AK, Popov V, Neve EP, Pettersson RF. 2006. Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae): a useful system for studying bunyaviral packaging and budding. J Virol, 80: 10428–10435.PubMedPubMedCentralGoogle Scholar
  35. Pierson TC, Kielian M. 2013. Flaviviruses: braking the entering. Curr Opin Virol, 3: 3–12.PubMedPubMedCentralGoogle Scholar
  36. Piper ME, Sorenson DR, Gerrard SR. 2011. Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One, 6: e18070.PubMedPubMedCentralGoogle Scholar
  37. Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN. 2012. An assembly model of rift valley Fever virus. Front Microbiol, 3: 254.PubMedPubMedCentralGoogle Scholar
  38. Santos RI, Rodrigues AH, Silva ML, Mortara RA, Rossi MA, Jamur MC, Oliver C, Arruda E. 2008. Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Res, 138: 139–143.PubMedGoogle Scholar
  39. Shi X, Brauburger K, Elliott RM. 2005. Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity. J Virol, 79: 13725–13734.PubMedPubMedCentralGoogle Scholar
  40. Spiropoulou CF. 2001. Hantavirus maturation. Curr Top Microbiol Immunol, 256: 33–46.PubMedGoogle Scholar
  41. Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. 2014. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol, 88: 237–248.PubMedPubMedCentralGoogle Scholar
  42. Svajger U, Anderluh M, Jeras M, Obermajer N. 2010. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal, 22: 1397–1405.PubMedGoogle Scholar
  43. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, Senba T, Kaneyuki S, Sakaguchi S, Satoh A, Hosokawa T, Kawabe Y, Kurihara S, Izumikawa K, Kohno S, Azuma T, Suemori K, Yasukawa M, Mizutani T, Omatsu T, Katayama Y, Miyahara M, Ijuin M, Doi K, Okuda M, Umeki K, Saito T, Fukushima K, Nakajima K, Yoshikawa T, Tani H, Fukushi S, Fukuma A, Ogata M, Shimojima M, Nakajima N, Nagata N, Katano H, Fukumoto H, Sato Y, Hasegawa H, Yamagishi T, Oishi K, Kurane I, Morikawa S, Saijo M. 2014. The first identification and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis, 209: 816–827.PubMedGoogle Scholar
  44. Tani H, Shimojima M, Fukushi S, Yoshikawa T, Fukuma A, Taniguchi S, Morikawa S, Saijo M. 2016. Characterization of Glycoprotein-Mediated Entry of Severe Fever with Thrombocytopenia Syndrome Virus. J Virol, 90: 5292–5301.PubMedPubMedCentralGoogle Scholar
  45. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med, 197: 823–829.PubMedPubMedCentralGoogle Scholar
  46. Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PD. 2005. Hantavirus Gc glycoprotein: evidence for a class II fusion protein. JGV, 86: 2937–2947.Google Scholar
  47. van Kooyk Y. 2008. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans, 36: 1478–1481.PubMedGoogle Scholar
  48. Varki A. 2007. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 446: 1023–1029.PubMedGoogle Scholar
  49. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. 2009. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 10: 778–790.PubMedPubMedCentralGoogle Scholar
  50. Wasmoen TL, Kakach LT, Collett MS. 1988. Rift Valley fever virus M segment: cellular localization of M segment-encoded proteins. Virology, 166: 275–280.PubMedGoogle Scholar
  51. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319: 1834–1837.PubMedGoogle Scholar
  52. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX. 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med, 364: 1523–1532.PubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations