Virologica Sinica

, Volume 32, Issue 1, pp 16–22 | Cite as

Progress towards understanding the pathogenesis of dengue hemorrhagic fever

Open Access
Review

Abstract

Dengue virus (DENV) is a mosquito-borne virus belonging to the Flaviviridae family. There are 4 serotypes of DENV that cause human disease through transmission by mosquito vectors. DENV infection results in a broad spectrum of clinical symptoms, ranging from mild fever to dengue hemorrhagic fever (DHF), the latter of which can progress to dengue shock syndrome (DSS) and death. Researchers have made unremitting efforts over the last half-century to understand DHF pathogenesis. DHF is probably caused by multiple factors, such as virus-specific antibodies, viral antigens and host immune responses. This review summarizes the current progress of studies on DHF pathogenesis, which may provide important information for achieving effective control of dengue in the future.

Keywords

DENV dengue hemorrhagic fever (DHF) NS1 genome antibody-dependent enhancement (ADE) T cell 

References

  1. Alvarez M, Rodriguez-Roche R, Bernardo L, Vazquez S, Morier L, Gonzalez D, Castro O, Kouri G, Halstead SB, Guzman MG. 2006. Dengue hemorrhagic Fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-2002. Am J Trop Med Hyg, 75: 1113–1117.PubMedGoogle Scholar
  2. Anderson JR, Rico-Hesse R. 2006. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg, 75: 886–892.PubMedPubMedCentralGoogle Scholar
  3. Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS. 2007. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog, 3: e183.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med, 7: 304ra141.CrossRefGoogle Scholar
  5. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature, 496: 504–507.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, Bozza PT, Kubelka CF. 2008. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis, 8: 86.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown MG, Hermann LL, Issekutz AC, Marshall JS, Rowter D, Al-Afif A, Anderson R. 2011. Dengue virus infection of mast cells triggers endothelial cell activation. J Virol, 85: 1145–1150.CrossRefPubMedGoogle Scholar
  8. Chaichana P, Okabayashi T, Puiprom O, Sasayama M, Sasaki T, Yamashita A, Ramasoota P, Kurosu T, Ikuta K. 2014. Low levels of antibody-dependent enhancement in vitro using viruses and plasma from dengue patients. PLoS One, 9: e92173.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chan-Hui PY, Swiderek KM. 2016. Immunological considerations for developing antibody therapeutics for Influenza A. Hum Vaccin Immunother, 12: 474–477.CrossRefPubMedGoogle Scholar
  10. Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT, Chen YS, Fan YH. 2013. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol, 166: 11–21.CrossRefPubMedGoogle Scholar
  11. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science, 344: 307–310.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen HL, Lin SR, Liu HF, King CC, Hsieh SC, Wang WK. 2008. Evolution of dengue virus type 2 during two consecutive outbreaks with an increase in severity in southern Taiwan in 2001–2002. Am J Trop Med Hyg, 79: 495–505.PubMedGoogle Scholar
  13. Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM. 2016. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis, 10: e0004828.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chuang YC, Lin J, Lin YS, Wang S, Yeh TM. 2016. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J Immunol, 196: 1218–1226.CrossRefPubMedGoogle Scholar
  15. Chuang YC, Wang SY, Lin YS, Chen HR, Yeh TM. 2013. Reevaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci, 20: 42.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G. 2010. Cross-reacting antibodies enhance dengue virus infection in humans. Science, 328: 745–748.CrossRefPubMedGoogle Scholar
  17. Falconar AK. 1997. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol, 142: 897–916.CrossRefPubMedGoogle Scholar
  18. Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi PY, Khromykh AA. 2010. RNA structures required for production of subgenomic flavivirus RNA. J Virol, 84: 11407–11417.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. 2007. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A, 104: 9422–9427.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Green S, Pichyangkul S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Nisalak A, Kurane I, Rothman AL, Ennis FA. 1999. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis, 180: 1429–1435.CrossRefPubMedGoogle Scholar
  21. Gubler DJ. 2011. Emerging vector-borne flavivirus diseases: are vaccines the solution? Expert Rev Vaccines, 10: 563–565.CrossRefPubMedGoogle Scholar
  22. Gubler DJ, Suharyono W, Lubis I, Eram S, Gunarso S. 1981. Epidemic dengue 3 in central Java, associated with low viremia in man. Am J Trop Med Hyg, 30: 1094–1099.PubMedGoogle Scholar
  23. Guzman MG, Alvarez M, Halstead SB. 2013. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol, 158: 1445–1459.CrossRefPubMedGoogle Scholar
  24. Guzman MG, Kouri G, Halstead SB. 2000. Do escape mutants explain rapid increases in dengue case-fatality rates within epidemics? Lancet, 355: 1902–1903.CrossRefPubMedGoogle Scholar
  25. Halstead SB. 1970. Observations related to pathogensis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J Biol Med, 42: 350–362.PubMedPubMedCentralGoogle Scholar
  26. Halstead SB. 1982. Immune enhancement of viral infection. Prog Allergy, 31: 301–364.PubMedGoogle Scholar
  27. Halstead SB, Cohen SN. 2015. Dengue Hemorrhagic Fever at 60 Years: Early Evolution of Concepts of Causation and Treatment. Microbiol Mol Biol Rev, 79: 281–291.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Kalyanarooj S, Nimmannitya S, Soegijanto S, Vaughn DW, Endy TP. 2002. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis, 8: 1474–1479.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hermann LL, Gupta SB, Manoff SB, Kalayanarooj S, Gibbons RV, Coller BA. 2015. Advances in the understanding, management, and prevention of dengue. J Clin Virol, 64: 153–159.CrossRefPubMedGoogle Scholar
  30. Hladish TJ, Pearson CA, Chao DL, Rojas DP, Recchia GL, Gomez-Dantes H, Halloran ME, Pulliam JR, Longini IM. 2016. Projected Impact of Dengue Vaccination in Yucatan, Mexico. PLoS Negl Trop Dis, 10: e0004661.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR. 2000. Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J, 14: 1603–1610.CrossRefPubMedGoogle Scholar
  32. Jaiyen Y, Masrinoul P, Kalayanarooj S, Pulmanausahakul R, Ubol S. 2009. Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness. Microbiol Immunol, 53: 442–450.CrossRefPubMedGoogle Scholar
  33. King CA, Anderson R, Marshall JS. 2002. Dengue virus selectively induces human mast cell chemokine production. J Virol, 76: 8408–8419.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kurane I, Matsutani T, Suzuki R, Takasaki T, Kalayanarooj S, Green S, Rothman AL, Ennis FA. 2011. T-cell responses to dengue virus in humans. Trop Med Health, 39: 45–51.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K. 2007. Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun, 362: 1051–1056.CrossRefPubMedGoogle Scholar
  36. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis, 186: 1165–1168.CrossRefPubMedGoogle Scholar
  37. Lin CF, Chiu SC, Hsiao YL, Wan SW, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, Liu CC, Lin YS. 2005. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol, 174: 395–403.CrossRefPubMedGoogle Scholar
  38. Liu JY, Liu Y, Nie KX, Du SY, Pang XJ, Wang PH, Cheng G. 2016. Flavivirus acquisition by mosquitoes requires the secretion of nonstructural protein 1 from infected hosts. Nature Microbiology. 1: 16087.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luo YY, Feng JJ, Zhou JM, Yu ZZ, Fang DY, Yan HJ, Zeng GC, Jiang LF. 2013. Identification of a novel infection-enhancing epitope on dengue prM using a dengue cross-reacting monoclonal antibody. BMC Microbiol, 13: 194.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Malavige GN, Huang LC, Salimi M, Gomes L, Jayaratne SD, Ogg GS. 2012. Cellular and cytokine correlates of severe dengue infection. PLoS One, 7: e50387.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mammen MP, Lyons A, Innis BL, Sun W, McKinney D, Chung RC, Eckels KH, Putnak R, Kanesa-thasan N, Scherer JM, Statler J, Asher LV, Thomas SJ, Vaughn DW. 2014. Evaluation of dengue virus strains for human challenge studies. Vaccine, 32: 1488–1494.CrossRefPubMedGoogle Scholar
  42. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science, 350: 217–221.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martina BE, Koraka P, Osterhaus AD. 2009. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 22: 564–581.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Martinez Gomez JM, Ong LC, Lam JH, Binte Aman SA, Libau EA, Lee PX, St John AL, Alonso S. 2016. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage. PLoS Negl Trop Dis, 10: e0004536.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mathew A, Rothman AL. 2008. Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev, 225: 300–313.CrossRefPubMedGoogle Scholar
  46. Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwong P, Grimes JM, Yoksan S, Malasit P, Simmons CP, Mongkolsapaya J, Screaton GR. 2011. An in-depth analysis of original antigenic sin in dengue virus infection. J Virol, 85: 410–421.CrossRefPubMedGoogle Scholar
  47. Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR. 2015. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med, 7: 304ra142.CrossRefPubMedGoogle Scholar
  48. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA, 18: 2029–2040.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nielsen DG. 2009. The relationship of interacting immunological components in dengue pathogenesis. Virol J, 6: 211.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe, 4: 579–591.CrossRefPubMedGoogle Scholar
  51. Rachman A, Harahap AR, Widhyasih RM. 2013. The role of antidengue virus NS-1 and anti-protein disulfide isomerase antibodies on platelet aggregation in secondary dengue infection. Acta Med Indones, 45: 44–48.PubMedGoogle Scholar
  52. Recker M, Vannice K, Hombach J, Jit M, Simmons CP. 2016. Assessing dengue vaccination impact: Model challenges and future directions. Vaccine, 34: 4461–4465.CrossRefPubMedGoogle Scholar
  53. Rico-Hesse R, Harrison LM, Nisalak A, Vaughn DW, Kalayanarooj S, Green S, Rothman AL, Ennis FA. 1998. Molecular evolution of dengue type 2 virus in Thailand. Am J Trop Med Hyg, 58: 96–101.PubMedGoogle Scholar
  54. Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT. 1997. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology, 230: 244–251.CrossRefPubMedGoogle Scholar
  55. Ritchie SA, Pyke AT, Hall-Mendelin S, Day A, Mores CN, Christofferson RC, Gubler DJ, Bennett SN, van den Hurk AF. 2013. An explosive epidemic of DENV-3 in Cairns, Australia. PLoS One, 8: e68137.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roby JA, Pijlman GP, Wilusz J, Khromykh AA. 2014. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses, 6: 404–427.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, Dulyachai W, Pengsaa K, Wartel TA, Moureau A, Saville M, Bouckenooghe A, Viviani S, Tornieporth NG, Lang J. 2012. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet, 380: 1559–1567.CrossRefPubMedGoogle Scholar
  58. Sasaki T, Setthapramote C, Kurosu T, Nishimura M, Asai A, Omokoko MD, Pipattanaboon C, Pitaksajjakul P, Limkittikul K, Subchareon A, Chaichana P, Okabayashi T, Hirai I, Leaungwutiwong P, Misaki R, Fujiyama K, Ono K, Okuno Y, Ramasoota P, Ikuta K. 2013. Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antiviral Res, 98: 423–431.CrossRefPubMedGoogle Scholar
  59. Sato R, Hamada N, Kashiwagi T, Imamura Y, Hara K, Nishimura M, Kamimura T, Takasaki T, Watanabe H, Koga T. 2015. Dengue Hemorrhagic Fever in a Japanese Traveler with Preexisting Japanese Encephalitis Virus Antibody. Trop Med Health, 43: 85–88.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol, 86: 13486–13500.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Smith SA, Zhou Y, Olivarez NP, Broadwater AH, de Silva AM, Crowe JE, Jr. 2012. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol, 86: 2665–2675.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Srikiatkhachorn A. 2009. Plasma leakage in dengue haemorrhagic fever. Thromb Haemost, 102: 1042–1049.PubMedGoogle Scholar
  63. Srikiatkhachorn A, Kelley JF. 2014. Endothelial cells in dengue hemorrhagic fever. Antiviral Res, 109: 160–170.CrossRefPubMedGoogle Scholar
  64. Sun DS, King CC, Huang HS, Shih YL, Lee CC, Tsai WJ, Yu CC, Chang HH. 2007. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost, 5: 2291–2299.CrossRefPubMedGoogle Scholar
  65. Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. 2016. Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J Cell Sci, 129: 1928–1939.CrossRefPubMedGoogle Scholar
  66. Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. 2003. Antibody-dependent enhancement of Ebola virus infection. J Virol, 77: 7539–7544.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ubol S, Chareonsirisuthigul T, Kasisith J, Klungthong C. 2008. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology, 376: 290–296.CrossRefPubMedGoogle Scholar
  68. Ubol S, Halstead SB. 2010. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol, 17: 1829–1835.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, Weaver SC. 2007. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology, 358: 402–412.CrossRefPubMedGoogle Scholar
  70. Wan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. 2014. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One, 9: e92495.CrossRefPubMedPubMedCentralGoogle Scholar
  71. WHO/TDR. 2009. Dengue guidelines for diagnosis, treatment, prevention and control. New Edition. WHO Press, Geneva.Google Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Tsinghua-Peking Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
  2. 2.School of Life ScienceTsinghua UniversityBeijingChina

Personalised recommendations