Virologica Sinica

, Volume 31, Issue 1, pp 3–11 | Cite as

Molecular mechanisms of coronavirus RNA capping and methylation

  • Yu Chen
  • Deyin Guo


The 5′-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2′-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5′-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5′-cap structure and methylation modification of viral genomic RNAs.


coronavirus RNA capping triphosphatase guanylyltransferase methyltransferase cap structure methylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas YM, Pichlmair A, Gorna MW, Superti-Furga G, Nagar B. 2013. Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature, 494: 60–64.CrossRefPubMedGoogle Scholar
  2. Adams MJ, Carstens EB. 2012. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol, 157: 1411–1422.CrossRefPubMedGoogle Scholar
  3. Ahola T, Ahlquist P. 1999. Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol, 73: 10061–10069.PubMedCentralPubMedGoogle Scholar
  4. Ahola T, Kaariainen L. 1995. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci USA, 92: 507–511.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Banerjee AK. 1980. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev, 44: 175–205.PubMedCentralPubMedGoogle Scholar
  6. Bhardwaj K, Guarino L, Kao CC. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol, 78: 12218–12224.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, Decroly E. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6: e1000863.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA, 109: 9372–9377.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Bowzard JB, Ranjan P, Sambhara S. 2013. RIG-I goes beyond naked recognition. Cell Host Microbe, 13: 247–249.CrossRefPubMedGoogle Scholar
  10. Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell, 57: 537–547.CrossRefPubMedGoogle Scholar
  11. Cauchemez S, van Kerkhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM. 2013. Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill, 18: 20503.PubMedCentralPubMedGoogle Scholar
  12. Chen P, Jiang M, Hu T, Liu Q, Chen XS, Guo D. 2007. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J Biochem Mol Biol, 40: 649–655.CrossRefPubMedGoogle Scholar
  13. Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA, 106: 3484–3489.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, Ahola T, Liang Y, Liu X, Guo D. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7: e1002294.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Chen Y, Tao J, Sun Y, Wu A, Su C, Gao G, Cai H, Qiu S, Wu Y, Ahola T, Guo D. 2013. Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7- methyltransferase. J Virol, 87: 6296–6305.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chrebet GL, Wisniewski D, Perkins AL, Deng Q, Kurtz MB, Marcy A, Parent SA. 2005. Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen, 10: 355–364.CrossRefPubMedGoogle Scholar
  17. Cowling VH. 2010. Regulation of mRNA cap methylation. Biochem J, 425: 295–302.PubMedCentralCrossRefGoogle Scholar
  18. Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller RM, Gale M, Jr., Shi PY, Diamond MS. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468: 452–456.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Darnell JE, Jr. 1979. Transcription units for mRNA production in eukaryotic cells and their DNA viruses. Prog Nucleic Acid Res Mol Biol, 22: 327–353.CrossRefPubMedGoogle Scholar
  20. De la Pena M, Kyrieleis OJ, Cusack S. 2007. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J, 26: 4913–4925.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B. 2011. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-OMethyltransferase nsp10/nsp16 Complex. PLoS Pathog, 7: e1002059.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Decroly E, Ferron F, Lescar J, Canard B. 2012. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol, 10: 51–65.Google Scholar
  23. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, Gorbalenya AE, Snijder EJ, Canard B. 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside- 2′O)-methyltransferase activity. J Virol, 82: 8071–8084.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. 2010. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog, 6: e1000896.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81: 12135–12144.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Enserink M. 2003. Infectious diseases. Clues to the animal origins of SARS. Science, 300: 1351.PubMedGoogle Scholar
  27. Ferron F, Decroly E, Selisko B, Canard B. 2012. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res, 96: 21–31.CrossRefPubMedGoogle Scholar
  28. Furuichi Y. 2015. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci, 91: 394–409.CrossRefPubMedGoogle Scholar
  29. Furuichi Y, Shatkin AJ. 2000. Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135–184.CrossRefPubMedGoogle Scholar
  30. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503: 535–538.CrossRefPubMedGoogle Scholar
  31. Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L. 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol, 148: 2207–2235.CrossRefPubMedGoogle Scholar
  32. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res, 117: 17–37.CrossRefPubMedGoogle Scholar
  33. Ho CK, Martins A, Shuman S. 2000. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. J Virol, 74: 5486–5494.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science, 314: 994–997.CrossRefPubMedGoogle Scholar
  35. Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, Li Z, Zhu Y, Tien P, Guo D. 2005. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol, 79: 5288–5295.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. 2006. A second, noncanonical RNA-dependent RNA polymerase in SARS coronavirus. Embo J, 25: 4933–4942.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol, 78: 5619–5632.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ivanov KA, Ziebuhr J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol, 78: 7833–7838.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Jin H, Elliott RM. 1993. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol, 67: 1396–1404.PubMedCentralPubMedGoogle Scholar
  40. Jin X, Chen Y, Sun Y, Zeng C, Wang Y, Tao J, Wu A, Yu X, Zhang Z, Tian J, Guo D. 2013. Characterization of the guanine- N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res, 176: 45–52.CrossRefPubMedGoogle Scholar
  41. Joseph JS, Saikatendu KS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. 2007. Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch. J Virol, 81: 6700–6708.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Ke M, Chen Y, Wu A, Sun Y, Su C, Wu H, Jin X, Tao J, Wang Y, Ma X, Pan JA, Guo D. 2012. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res, 167: 322–328.CrossRefPubMedGoogle Scholar
  43. Lai MM, Patton CD, Stohlman SA. 1982. Further characterization of mRNA′s of mouse hepatitis virus: presence of common 5′- end nucleotides. J Virol, 41: 557–565.PubMedCentralPubMedGoogle Scholar
  44. Lai MM, Stohlman SA. 1981. Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol, 38: 661–670.PubMedCentralPubMedGoogle Scholar
  45. Leahy MB, Dessens JT, Nuttall PA. 1997. In vitro polymerase activity of Thogoto virus: evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus. J Virol, 71: 8347–8351.PubMedCentralPubMedGoogle Scholar
  46. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310: 676–679.CrossRefPubMedGoogle Scholar
  47. Liu H, Kiledjian M. 2006. Decapping the message: a beginning or an end. Biochem Soc Trans, 34: 35–38.CrossRefPubMedGoogle Scholar
  48. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. 2015. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA, 112: 9436–9441.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Mao X, Shuman S. 1994. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem, 269: 24472–24479.PubMedGoogle Scholar
  50. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, van Amerongen G, Peiris JS, Lim W, Osterhaus AD. 2003. Virology: SARS virus infection of cats and ferrets. Nature, 425: 915.CrossRefPubMedGoogle Scholar
  51. Martinez-Salas E, Pineiro D, Fernandez N. 2012. Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics, 2012: 391546.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, Ziebuhr J. 2006. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A, 103: 5108–5113.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Mizutani T. 2013. A novel coronavirus, MERS-CoV. Uirusu, 63: 1–6. (In Japanese)CrossRefPubMedGoogle Scholar
  54. Nallagatla SR, Toroney R, Bevilacqua PC. 2008. A brilliant disguise for self RNA: 5′-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol, 5: 140–144.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Ogino T, Banerjee AK. 2007. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell, 25: 85–97.CrossRefPubMedGoogle Scholar
  56. Pan J, Peng X, Gao Y, Li Z, Lu X, Chen Y, Ishaq M, Liu D, Dediego ML, Enjuanes L, Guo D. 2008. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One, 3: e3299.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Pelletier J, Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334: 320–325.CrossRefPubMedGoogle Scholar
  58. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science, 314: 997–1001.CrossRefPubMedGoogle Scholar
  59. Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. 2004. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol, 78: 9977–9986.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas TS, Zhou Y, Li H, Shi PY. 2006. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol, 80: 8362–8370.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 140: 397–408.CrossRefPubMedGoogle Scholar
  62. Saha N, Schwer B, Shuman S. 1999. Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes. J Biol Chem, 274: 16553–16562.CrossRefPubMedGoogle Scholar
  63. Saha N, Shuman S, Schwer B. 2003. Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase. J Virol, 77: 7300–7307.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Sawicki SG, Sawicki DL, Younker D, Meyer Y, Thiel V, Stokes H, Siddell SG. 2005. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog, 1: e39.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Schwer B, Lehman K, Saha N, Shuman S. 2001. Characterization of the mRNA capping apparatus of Candida albicans. J Biol Chem, 276: 1857–1864.CrossRefPubMedGoogle Scholar
  66. Schwer B, Mao X, Shuman S. 1998. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res, 26: 2050–2057.PubMedCentralCrossRefPubMedGoogle Scholar
  67. Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. 2014. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res, 194: 90–99.CrossRefPubMedGoogle Scholar
  68. Shatkin AJ. 1976. Capping of eucaryotic mRNAs. Cell, 9: 645–653.CrossRefPubMedGoogle Scholar
  69. Shuman S. 2001. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol, 66: 1–40.CrossRefPubMedGoogle Scholar
  70. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. 2013. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog, 9: e1003565.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Smith EC, Case JB, Blanc H, Isakov O, Shomron N, Vignuzzi M, Denison MR. 2015. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol, 89: 6418–6426.PubMedCentralCrossRefPubMedGoogle Scholar
  72. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 331: 991–1004.CrossRefPubMedGoogle Scholar
  73. Sun Y, Wang Z, Tao J, Wang Y, Wu A, Yang Z, Wang K, Shi L, Chen Y, Guo D. 2014. Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine- N7-methyltransferase. Antiviral Res, 104: 156–164.CrossRefPubMedGoogle Scholar
  74. Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, Poon LL, Kung HF, Huang JD. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem, 278: 39578–39582.CrossRefPubMedGoogle Scholar
  75. te Velthuis AJ, van den Worm SH, Snijder EJ. 2012. The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res, 40: 1737–1747.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol, 84: 2305–2315.CrossRefPubMedGoogle Scholar
  77. Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. 1992. Internal ribosome entry site within hepatitis C virus RNA. J Virol, 66: 1476–1483.PubMedCentralPubMedGoogle Scholar
  78. van Vliet AL, Smits SL, Rottier PJ, de Groot RJ. 2002. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. Embo J, 21: 6571–6580.PubMedCentralCrossRefPubMedGoogle Scholar
  79. von Grotthuss M, Wyrwicz LS, Rychlewski L. 2003. mRNA cap-1 methyltransferase in the SARS genome. Cell, 113: 701–702.CrossRefPubMedGoogle Scholar
  80. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. 2006. Review of bats and SARS. Emerg Infect Dis, 12: 1834–1840.PubMedCentralCrossRefPubMedGoogle Scholar
  81. Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D. 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol, 89: 8416–8427.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Woyciniuk P, Linder M, Scholtissek C. 1995. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res, 35: 91–99.CrossRefPubMedGoogle Scholar
  83. Ziebuhr J. 2004. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol, 7: 412–419.CrossRefPubMedGoogle Scholar
  84. Zuniga S, Sola I, Alonso S, Enjuanes L. 2004. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol, 78: 980–994.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12: 137–143.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations