Virologica Sinica

, Volume 31, Issue 3, pp 207–218 | Cite as

The V1 region of gp120 is preferentially selected during SIV/HIV transmission and is indispensable for envelope function and virus infection

Research Article

Abstract

A transmission bottleneck occurs during each human immunodeficiency virus (HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted viruses that are preferentially selected have not been fully elucidated. Here, we analyzed amino acids changes in the envelope protein during simian immunodeficiency virus (SIV)/HIV deep transmission history and current HIV evolution within the last 15–20 years. Our results confirmed that the V1V2 region of gp120 protein, particularly V1, was preferentially selected. A shorter V1 region was preferred during transmission history, while during epidemic, HIV may evolve to an expanded V1 region gradually and thus escape immune recognition. We then constructed different HIV-1 V1 mutants using different HIV-1 subtypes to elucidate the role of the V1 region in envelope function. We found that the V1 region, although highly variable, was indispensable for virus entry and infection, probably because V1 deletion mutants exhibited impaired processing of gp160 into mature gp120 and gp41. Additionally, the V1 region affected Env incorporation. These results indicated that the V1 region played a critical role in HIV transmission and infection.

Keywords

simian immunodeficiency virus (SIV) human immunodeficiency virus (HIV) transmission selection V1 loop Env function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12250_2016_3725_MOESM1_ESM.pdf (99 kb)
Supplementary material, approximately 99.4 KB.
12250_2016_3725_MOESM2_ESM.xlsx (13 kb)
Supplementary material, approximately 12.7 KB.
12250_2016_3725_MOESM3_ESM.xlsx (21 kb)
Supplementary material, approximately 21.3 KB.

References

  1. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. 1996. CC CKRS: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophagetropic HIV-1. Science, 272: 1955–1958.CrossRefPubMedGoogle Scholar
  2. Boeras DI, Hraber PT, Hurlston M, Evans-Strickfaden T, Bhattacharya T, Giorgi EE, Mulenga J, Karita E, Korber BT, Allen S, Hart CE, Derdeyn CA, Hunter E. 2011. Role of donor genital tract HIV-1 diversity in the transmission bottleneck. Proc Natl Acad Sci U S A, 108: E1156–E1163.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bunnik EM, Euler Z, Welkers MR, Boeser-Nunnink BD, Grijsen ML, Prins JM, Schuitemaker H. 2010. Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level. Nat Med, 16: 995–997.CrossRefPubMedGoogle Scholar
  4. Cardaci S, Soster M, Bussolino F, Marchio S. 2013. The V1/V2 loop of HIV-1 gp120 is necessary for Tat binding and consequent modulation of virus entry. FEBS Lett, 587: 2943–2951.CrossRefPubMedGoogle Scholar
  5. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJ, Allen TM, Allen S, Hunter E. 2014. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science, 345: 1254031.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cavrois M, Neidleman J, Santiago ML, Derdeyn CA, Hunter E, Greene WC. 2014. Enhanced fusion and virion incorporation for HIV-1 subtype C envelope glycoproteins with compact V1/V2 domains. J Virol, 88: 2083–2094.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chohan B, Lang D, Sagar M, Korber B, Lavreys L, Richardson B, Overbaugh J. 2005. Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J Virol, 79: 6528–6531.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Curlin ME, Zioni R, Hawes SE, Liu Y, Deng W, Gottlieb GS, Zhu T, Mullins JI. 2010. HIV-1 envelope subregion length variation during disease progression. PLoS Pathog, 6: e1001228.CrossRefGoogle Scholar
  9. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. 1984. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, 312: 763–767.CrossRefPubMedGoogle Scholar
  10. Dang S, Wang Y, Budeus B, Verheyen J, Yang R, Hoffmann D. 2014. Differential selection in HIV-1 gp120 between subtype B and East Asian variant B'. Virol Sin, 29: 40–47.CrossRefPubMedGoogle Scholar
  11. Del Prete GQ, Ailers B, Moldt B, Keele BF, Estes JD, Rodriguez A, Sampias M, Oswald K, Fast R, Trubey CM, Chertova E, Smedley J, LaBranche CC, Montefiori DC, Burton DR, Shaw GM, Markowitz M, Piatak M, Jr., KewalRamani VN, Bieniasz PD, Lifson JD, Hatziioannou T. 2014. Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins. Cell Host Microbe, 16: 412–418.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deng HK, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, DiMarzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 381: 661–666.CrossRefPubMedGoogle Scholar
  13. Feng Y, Broder CC, Kennedy PE, Berger EA. 1996. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272: 872–877.CrossRefPubMedGoogle Scholar
  14. Frange P, Meyer L, Jung M, Goujard C, Zucman D, Abel S, Hochedez P, Gousset M, Gascuel O, Rouzioux C, Chaix ML, Group APCS. 2013. Sexually-transmitted/founder HIV-1 cannot be directly predicted from plasma or PBMC-derived viral quasispecies in the transmitting partner. PLoS One, 8: e69144.CrossRefGoogle Scholar
  15. Gonzalez MW, DeVico AL, Lewis GK, Spouge JL. 2015. Conserved molecular signatures in gp120 are associated with the genetic bottleneck during simian immunodeficiency virus (SIV), SIV-human immunodeficiency virus (SHIV), and HIV type 1 (HIV-1) transmission. J Virol, 89: 3619–3629.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hamoudi M, Simon-Loriere E, Gasser R, Negroni M. 2013. Genetic diversity of the highly variable V1 region interferes with Human Immunodeficiency Virus type 1 envelope functionality. Retrovirology, 10: 114.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ishikawa H, Meng FX, Kondo N, Iwamoto A, Matsuda Z. 2012. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel, 25: 813–820.CrossRefPubMedGoogle Scholar
  18. Joseph SB, Swanstrom R. 2014. HIV/AIDS. A fitness bottleneck in HIV-1 transmission. Science, 345: 136–137.CrossRefPubMedGoogle Scholar
  19. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM. 2008. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A, 105: 7552–7557.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klasse PJ. 2012. The molecular basis of HIV entry. Cell Microbiol, 14: 1183–1192.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kondo N, Miyauchi K, Meng FX, Iwamoto A, Matsuda Z. 2010. Conformational Changes of the HIV-1 Envelope Protein during Membrane Fusion Are Inhibited by the Replacement of Its Membrane-spanning Domain. J Biol Chem, 285: 14681–14688.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Y, Yang D, Wang JY, Yao Y, Zhang WZ, Wang LJ, Cheng DC, Yang FK, Zhang FM, Zhuang M, Ling H. 2014. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry. PLoS One, 9: e86083.CrossRefGoogle Scholar
  23. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin KM, Schramm CA, Zhang Z, Zhu J, Shapiro L, Program NCS, Mullikin JC, Gnanakaran S, Hraber P, Wiehe K, Kelsoe G, Yang G, Xia SM, Montefiori DC, Parks R, Lloyd KE, Scearce RM, Soderberg KA, Cohen M, Kamanga G, Louder MK, Tran LM, Chen Y, Cai F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S, Zhang B, Zheng A, Shaw GM, Hahn BH, Kepler TB, Korber BT, Kwong PD, Mascola JR, Haynes BF. 2013a. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 496: 469–476.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liao HX, Tsao CY, Alam SM, Muldoon M, Vandergrift N, Ma BJ, Lu XZ, Sutherland LL, Scearce RM, Bowman C, Parks R, Chen HY, Blinn JH, Lapedes A, Watson S, Xia SM, Foulger A, Hahn BH, Shaw GM, Swanstrom R, Montefiori DC, Gao F, Haynes BF, Korber B. 2013b. Antigenicity and Immunogenicity of Transmitted/Founder, Consensus, and Chronic Envelope Glycoproteins of Human Immunodeficiency Virus Type 1. J Virol, 87: 4185–4201.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nie J, Zhao J, Chen Q, Huang W, Wang Y. 2014. Three amino acid residues in the envelope of human immunodeficiency virus type 1 CRF07_BC regulate viral neutralization susceptibility to the human monoclonal neutralizing antibody IgG1b12. Virol Sin, 29: 299–307.CrossRefPubMedGoogle Scholar
  26. O'Connell RJ, Kim JH, Excler JL. 2014. The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Rev Vaccines, 13: 1489–1500.CrossRefPubMedGoogle Scholar
  27. Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, Hora B, Berg A, Cai FP, Hopper J, Denny TN, Ding HT, Ochsenbauer C, Kappes JC, Galimidi RP, West AP, Bjorkman PJ, Wilen CB, Doms RW, O'Brien M, Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn BH. 2013. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A, 110: 6626–6633.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pollakis G, Baan E, van Werkhoven MB, Berkhout B, Bakker M, Jurriaans S, Paxton WA. 2015. Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. AIDS, 29: 1161–1171.CrossRefPubMedGoogle Scholar
  29. Sagar M, Laeyendecker O, Lee S, Gamiel J, Wawer MJ, Gray RH, Serwadda D, Sewankambo NK, Shepherd JC, Toma J, Huang W, Quinn TC. 2009. Selection of HIV variants with signature genotypic characteristics during heterosexual transmission. J Infect Dis, 199: 580–589.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sagar M, Wu X, Lee S, Overbaugh J. 2006. Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol, 80: 9586–9598.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM. 2009. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med, 206: 1273–1289.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Samleerat T, Braibant M, Jourdain G, Moreau A, Ngo-Giang-Huong N, Leechanachai P, Hemvuttiphan J, Hinjiranandana T, Changchit T, Warachit B, Suraseranivong V, Lallemant M, Barin F. 2008. Characteristics of HIV type 1 (HIV-1) glycoprotein 120 env sequences in mother-infant pairs infected with HIV-1 subtype CRF01_AE. J Infect Dis, 198: 868–876.CrossRefPubMedGoogle Scholar
  33. Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med, 1: a006841.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sharp PM, Rayner JC, Hahn BH. 2013. Evolution. Great apes and zoonoses. Science, 340: 284–286.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shaw GM, Hunter E. 2012. HIV transmission. Cold Spring Harb Perspect Med, 2: a006965.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Starcich BR, Hahn BH, Shaw GM, Mcneely PD, Modrow S, Wolf H, Parks ES, Parks WP, Josephs SF, Gallo RC, Wongstaal F. 1986. Identification and Characterization of Conserved and Variable Regions in the Envelope Gene of Htlv-Iii Lav, the Retrovirus of Aids. Cell, 45: 637–648.CrossRefPubMedGoogle Scholar
  37. Stone M, Keele BF, Ma ZM, Bailes E, Dutra J, Hahn BH, Shaw GM, Miller CJ. 2010. A limited number of simian immunodeficiency virus (SIV) env variants are transmitted to rhesus macaques vaginally inoculated with SIVmac251. J Virol, 84: 7083–7095.CrossRefPubMedPubMedCentralGoogle Scholar
  38. van Gils MJ, Bunnik EM, Boeser-Nunnink BD, Burger JA, Terlouw-Klein M, Verwer N, Schuitemaker H. 2011. Longer V1V2 region with increased number of potential N-linked glycosylation sites in the HIV-1 envelope glycoprotein protects against HIV-specific neutralizing antibodies. J Virol, 85: 6986–6995.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang H, Li X, Nakane S, Liu S, Ishikawa H, Iwamoto A, Matsuda Z. 2014. Co-Expression of Foreign Proteins Tethered to HIV-1 Envelope Glycoprotein on the Cell Surface by Introducing an Intervening Second Membrane-Spanning Domain. Plos One, 9: e96790.CrossRefGoogle Scholar
  40. Wang J, Sen J, Rong L, Caffrey M. 2008. Role of the HIV gp120 conserved domain 1 in processing and viral entry. J Biol Chem, 283: 32644–32649.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wilen CB, Parrish NF, Pfaff JM, Decker JM, Henning EA, Haim H, Petersen JE, Wojcechowskyj JA, Sodroski J, Haynes BF, Montefiori DC, Tilton JC, Shaw GM, Hahn BH, Doms RW. 2011. Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J Virol, 85: 8514–8527.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Willey RL, Rutledge RA, Dias S, Folks T, Theodore T, Buckler CE, Martin MA. 1986. Identification of Conserved and Divergent Domains within the Envelope Gene of the Acquired-Immunodeficiency-Syndrome Retrovirus. Proc Natl Acad Sci U S A, 83: 5038–5042.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Worobey M, Telfer P, Souquiere S, Hunter M, Coleman CA, Metzger MJ, Reed P, Makuwa M, Hearn G, Honarvar S, Roques P, Apetrei C, Kazanji M, Marx PA. 2010. Island biogeography reveals the deep history of SIV. Science, 329: 1487.CrossRefPubMedGoogle Scholar
  44. Yuan T, Li J, Zhang MY. 2013. HIV-1 envelope glycoprotein variable loops are indispensable for envelope structural integrity and virus entry. PLoS One, 8: e69789.CrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Institute for VirologyUniversity Hospital Essen, University of Duisburg-EssenEssenGermany

Personalised recommendations