Virologica Sinica

, Volume 29, Issue 5, pp 299–307 | Cite as

Three amino acid residues in the envelope of human immunodeficiency virus type 1 CRF07_BC regulate viral neutralization susceptibility to the human monoclonal neutralizing antibody IgG1b12

  • Jianhui Nie
  • Juan Zhao
  • Qingqing Chen
  • Weijin Huang
  • Youchun Wang
Research Article

Abstract

The CD4 binding site (CD4bs) of envelope glycoprotein (Env) is an important conserved target for anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12 (b12) could recognize conformational epitopes that overlap the CD4bs of Env. Different virus strains, even derived from the same individual, showed distinct neutralization susceptibility to b12. We examined the key amino acid residues affecting b12 neutralization susceptibility using single genome amplification and pseudovirus neutralization assay. Eleven amino acid residues were identified that affect the sensitivity of Env to b12. Through site-directed mutagenesis, an amino acid substitution at position 182 in the V2 region of Env was confirmed to play a key role in regulating the b12 neutralization susceptibility. The introduction of V182L to a resistant strain enhanced its sensitivity to b12 more than twofold. Correspondingly, the introduction of L182V to a sensitive strain reduced its sensitivity to b12 more than tenfold. Amino acid substitution at positions 267 and 346 could both enhance the sensitivity to b12 more than twofold. However, no additive effect was observed when the three site mutageneses were introduced into the same strain, and the sensitivity was equivalent to the single V182L mutation. CRF07_BC is a major circulating recombinant form of HIV-1 prevalent in China. Our data may provide important information for understanding the molecular mechanism regulating the neutralization susceptibility of CRF07_BC viruses to b12 and may be helpful for a vaccine design targeting the CD4bs epitopes.

Keywords

human immunodeficiency virus type 1 CRF07_BC envelope glycoprotein IgG1b12 neutralizing antibody single genome amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balazs A B, Chen J, Hong C M, Rao D S, Yang L, Baltimore D. 2012. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 481: 81–84.CrossRefGoogle Scholar
  2. Barbas C F, 3rd, Bjorling E, Chiodi F, Dunlop N, Cababa D, Jones T M, Zebedee S L, Persson M A, Nara P L, Norrby E, et al. 1992. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. Proc Natl Acad Sci U S A, 89: 9339–9343.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Binley J M, Wrin T, Korber B, Zwick M B, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H, Petr-opoulos C J, Burton D R. 2004. Comprehensive crossclade neutralization analysis of a panel of anti-human imm-unodeficiency virus type 1 monoclonal antibodies. J Virol, 78: 13232–13252.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Burton D R, Barbas C F, 3rd, Persson M A, Koenig S, Chanock R M, Lerner R A. 1991. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci U S A, 88: 10134–10137.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Burton D R, Pyati J, Koduri R, Sharp S J, Thornton G B, Parren P W, Sawyer L S, Hendry R M, Dunlop N, Nara P L, et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science, 266: 1024–1027.PubMedCrossRefGoogle Scholar
  6. Butler D M, Pacold M E, Jordan P S, Richman D D, Smith D M. 2009. The efficiency of single genome amplification and sequencing is improved by quantitation and use of a bioinformatics tool. J Virol Methods, 162: 280–283.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chong H, Hong K, Zhang C, Nie J, Song A, Kong W, Wang Y. 2008. Genetic and neutralization properties of HIV-1 env clones from subtype B/BC/AE infections in China. J Acquir Immune Defic Syndr, 47: 535–543.PubMedCrossRefGoogle Scholar
  8. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton R E, Hill C M, Davis C B, Peiper S C, Schall T J, Littman D R, and Landau N R. 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 381: 661–666.PubMedCrossRefGoogle Scholar
  9. Derdeyn C A, Decker J M, Sfakianos J N, Wu X, O’Brien W A, Ratner L, Kappes J C, Shaw G M, Hunter E. 2000. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol, 74: 8358–8367.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Duenas-Decamp M J, Peters P, Burton D, Clapham P R. 2008. Natural resistance of human immunodeficiency virus type 1 to the CD4bs antibody b12 conferred by a glycan and an arginine residue close to the CD4 binding loop. J Virol, 82: 5807–5814.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gnanakaran S, Daniels M G, Bhattacharya T, Lapedes A S, Sethi A, Li M, Tang H, Greene K, Gao H, Haynes B F, Cohen M S, Shaw G M, Seaman M S, Kumar A, Gao F, Montefiori D C, Korber B. 2010. Genetic signatures in the envelope gly-coproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS Comput Biol. 6: e1000955.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Haynes B F, Gilbert P B, McElrath M J, Zolla-Pazner S, Tomaras G D, Alam S M, Evans D T, Montefiori D C, Karnasuta C, Sutthent R, Liao H X, DeVico A L, Lewis G K, Williams C, Pinter A, Fong Y, Janes H, DeCamp A, Huang Y, Rao M, Billings E, Karasavvas N, Robb M L, Ngauy V, de Souza M S, Paris R, Ferrari G, Bailer R T, Soderberg K A, Andrews C, Berman P W, Frahm N, De Rosa S C, Alpert M D, Yates N L, Shen X, Koup R A, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Michael N L, Kim J H. 2012. Immunecorrelates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med, 366: 1275–1286.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hessell A J, Poignard P, Hunter M, Hangartner L, Tehrani D M, Bleeker W K, Parren P W, Marx P A, Burton D R. 2009. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat Med, 15: 951–954.PubMedCrossRefGoogle Scholar
  14. Kent S J, Cooper D A, Chhi Vun M, Shao Y, Zhang L, Ganguly N, Bela B, Tamashiro H, Ditangco R, Rerks-Ngarm S, Pitisuttithum P, Van Kinh N, Bernstein A, Osmanov S. 2010. AIDS vaccine for Asia Network (AVAN): expanding the regional role in developing HIV vaccines. PLoS Med, 7: e1000331.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Li Y, Migueles S A, Welcher B, Svehla K, Phogat A, Louder M K, Wu X, Shaw G M, Connors M, Wyatt R T, Mascola J R. 2007. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med, 13: 1032–1034.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Mo H, Stamatatos L, Ip J E, Barbas C F, Parren P W, Burton D R, Moore J P, Ho D D. 1997. Human immunodeficiency virus type 1 mutants that escape neutralization by human monoclonal antibody IgG1b12. off. J Virol, 71: 6869–6874.Google Scholar
  17. Moore J P, Cao Y, Leu J, Qin L, Korber B, Ho D D. 1996. Inter and intraclade neutralization of human immunodeficiency virus type 1: genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes. J Virol, 70: 427–444.PubMedPubMedCentralGoogle Scholar
  18. Nie J, Zhang C, Liu W, Wu X, Li F, Wang S, Liang F, Song A, Wang Y. 2010. Genotypic and phenotypic characterization of HIV-1 CRF01_AE env molecular clones from infections in China. J Acquir Immune Defic Syndr, 53: 440–450.PubMedCrossRefGoogle Scholar
  19. Palmer S, Kearney M, Maldarelli F, Halvas E K, Bixby C J, Bazmi H, Rock D, Falloon J, Davey R T, Jr., Dewar R L, Metcalf J A, Hammer S, Mellors J W, Coffin J M. 2005. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol, 43: 406–413.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Pantophlet R, Ollmann Saphire E, Poignard P, Parren P W, Wilson I A, Burton D R. 2003. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol, 77: 642–658.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Platt E J, Wehrly K, Kuhmann S E, Chesebro B, Kabat D. 1998. Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol, 72: 2855–2864.PubMedPubMedCentralGoogle Scholar
  22. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil J G, Francis D P, Stablein D, Birx D L, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb M L, Michael N L, Kunasol P, Kim J H, and Investigators M-T. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med, 361: 2209–2220.PubMedCrossRefGoogle Scholar
  23. Roben P, Moore J P, Thali M, Sodroski J, Barbas C F, 3rd, Burton D R. 1994. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J Virol, 68: 4821–4828.PubMedPubMedCentralGoogle Scholar
  24. Rolland M, Edlefsen P T, Larsen B B, Tovanabutra S, Sanders-Buell E, Hertz T, deCamp A C, Carrico C, Menis S, Magaret C A, Ahmed H, Juraska M, Chen L, Konopa P, Nariya S, Stoddard J N, Wong K, Zhao H, Deng W, Maust B S, Bose M, Howell S, Bates A, Lazzaro M, O’Sullivan A, Lei E, Bradfield A, Ibitamuno G, Assawadarachai V, O’Connell R J, deSouza M S, Nitayaphan S, Rerks-Ngarm S, Robb M L, McLellan J S, Georgiev I, Kwong P D, Carlson J M, Michael N L, Schief W R, Gilbert P B, Mullins J I, Kim J H. 2012. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature, 490: 417–420.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Saphire E O, Parren P W, Pantophlet R, Zwick M B, Morris G M, Rudd P M, Dwek R A, Stanfield R L, Burton D R, Wilson I A. 2001. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science, 293: 1155–1159.PubMedCrossRefGoogle Scholar
  26. Shang H, Han X, Shi X, Zuo T, Goldin M, Chen D, Han B, Sun W, Wu H, Wang X, Zhang L. 2011. Genetic and neutralization sensitivity of diverse HIV-1 env clones from chronically in-fected patients in China. J Biol Chem, 286: 14531–14541.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Teng T, Shao Y. 2011. Scientific approaches to AIDS pre-vention and control in China. Adv Dent Res, 23: 10–12.PubMedCrossRefGoogle Scholar
  28. Utachee P, Isarangkura-na-ayuthaya P, Tokunaga K, Ikuta K, Takeda N, Kameoka M. 2014. Impact of amino acid substitutions in the V2 and C2 regions of human im-munodeficiency virus type 1 CRF01_AE envelope glycoprotein gp120 on viral neutralization susceptibility to broadly neutralizing antibodies specific for the CD4 binding site. Retrovirology, 11: 32.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Utachee P, Nakamura S, Isarangkura-Na-Ayuthaya P, Tokunaga K, Sawanpanyalert P, Ikuta K, Auwanit W, Kameoka M. 2010. Two N-linked glycosylation sites in the V2 and C2 regions of human immunodeficiency virus type 1 CRF01_AE envelope glycoprotein gp120 regulate viral neutralization susceptibility to the human monoclonal antibody specific for the CD4 binding domain. J Virol, 84: 4311–4320.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Veselinovic M, Neff C P, Mulder L R, Akkina R. 2012. Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology, 432: 505–510.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Walker L M, Phogat S K, Chan-Hui P Y, Wagner D, Phung P, Goss J L, Wrin T, Simek M D, Fling S, Mitcham J L, Lehrman J K, Priddy F H, Olsen O A, Frey S M, Hammond P W, Kaminsky S, Zamb T, Moyle M, Koff W C, Poignard P, Burton D R. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science, 326: 285–289.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Walker L M, Huber M, Doores K J, Falkowska E, Pejchal R, Julien J P, Wang S K, Ramos A, Chan-Hui P Y, Moyle M, Mitcham J L, Hammond P W, Olsen O A, Phung P, Fling S, Wong C H, Phogat S, Wrin T, Simek M D, Koff W C, Wilson I A, Burton D R, Poignard P. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 477: 466–470.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Wang S, Nie J, Wang Y. 2011. Comparisons of the genetic and neutralization properties of HIV-1 subtype C and CRF07/08_BC env molecular clones isolated from infections in China. Virus Res, 155: 137–146.PubMedCrossRefGoogle Scholar
  34. Wang Y, Li X, Song A, Zhang C, Chen Y, Chen C, Lin Y, Shun L, Li L, Liu Y, Yang J, Yang B, Tang Q, Harrison T J. 2005. Prevalence and partial sequence analysis of human T cell lymphotropic virus type I in China. J Med Virol, 76: 613–618.PubMedCrossRefGoogle Scholar
  35. Wei X, Decker J M, Liu H, Zhang Z, Arani R B, Kilby J M, Saag M S, Wu X, Shaw G M, Kappes J C. 2002. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother, 46: 1896–1905.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Wei X, Decker J M, Wang S, Hui H, Kappes J C, Wu X, Salazar-Gonzalez J F, Salazar M G, Kilby J M, Saag M S, Komarova N L, Nowak M A, Hahn B H, Kwong P D, Shaw G M. 2003. Antibody neutralization and escape by HIV-1. Nature, 422: 307–312.PubMedCrossRefGoogle Scholar
  37. Wu X, Yang Z Y, Li Y, Hogerkorp C M, Schief W R, Seaman M S, Zhou T, Schmidt S D, Wu L, Xu L, Longo N S, McKee K, O’Dell S, Louder M K, Wycuff D L, Feng Y, Nason M, Doria-Rose N, Connors M, Kwong P D, Roederer M, Wyatt R T, Nabel G J, Mascola J R. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science, 329: 856–861.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Wyatt R, Sodroski J. 1998. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 280: 1884–1888.PubMedCrossRefGoogle Scholar
  39. Zhang L, Chen Z, Cao Y, Yu J, Li G, Yu W, Yin N, Mei S, Li L, Balfe P, He T, Ba L, Zhang F, Lin H H, Yuen M F, Lai C L, Ho D D. 2004. Molecular characterization of human immunodeficiency virus type 1 and hepatitis C virus in paid blood donors and injection drug users in china. J Virol, 78: 13591–13599.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Zhang Y, Lu L, Ba L, Liu L, Yang L, Jia M, Wang H, Fang Q, Shi Y, Yan W, Chang G, Zhang L, Ho D D, Chen Z. 2006. Dominance of HIV-1 subtype CRF01_AE in sexually acquired cases leads to a new epidemic in Yunnan province of China. PLoS Med, 3: e443.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Zolla-Pazner S, deCamp A C, Cardozo T, Karasavvas N, Gottardo R, Williams C, Morris D E, Tomaras G, Rao M, Billings E, Berman P, Shen X, Andrews C, O’Connell R J, Ngauy V, Nitayaphan S, de Souza M, Korber B, Koup R, Bailer R T, Mascola J R, Pinter A, Montefiori D, Haynes B F, Robb M L, Rerks-Ngarm S, Michael N L, Gilbert P B, and Kim J H. 2013. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PLoS One, 8: e53629.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jianhui Nie
    • 1
    • 2
  • Juan Zhao
    • 2
  • Qingqing Chen
    • 2
  • Weijin Huang
    • 2
  • Youchun Wang
    • 1
    • 2
  1. 1.College of Life ScienceJilin UniversityChangchunChina
  2. 2.Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and sex-transmitted virus vaccinesNational Institutes for Food and Drug Control (NIFDC)BeijingChina

Personalised recommendations