Virologica Sinica

, Volume 28, Issue 2, pp 116–123 | Cite as

Molecular characterization of China human rabies vaccine strains

Research Article

Abstract

To understand the molecular characteristics of China human rabies vaccine strains, we report the full-length genome of the aG strain and present a comprehensive analysis of this strain and almost all available lyssavirus genomes (58 strains) from GenBank (as of Jan 6, 2011). It is generally considered that the G protein plays a predominant role in determining the pathogenicity of the virus, to this end we predicted the tertiary structure of the G protein of aG strain, CTN181 strain and wild type strain HN10 based on the crystal structure of Vesicular stomatitis virus (VSV) G. The predicted RABV G structure has a similar topology to VSV G and the ectodomain can be divided into 4 distinct domains DI — DIV. By mapping the characterized mutations to this structure between China vaccine strains and their close street strains, we speculate that the G303(P-H) mutations of CTN181 and HN10 causing DII 3D change may be associated with the II attenuated virulence in both strains. Specifically, the two signature mutations (G165P and G231P) in the aG strain are withinßsheets, suggesting that both sites are of structural importance.

Keywords

Rabies virus Lyssavirus Genome Glycoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badrane H, and Tordo N. 2001. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol, 75: 8096–8104.PubMedCrossRefGoogle Scholar
  2. Conzelmann K K, Cox J H, Schneider L G, and Thiel H J. 1990. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology, 175: 485–499.PubMedCrossRefGoogle Scholar
  3. Delmas O, Holmes E C, Talbi C, Larrous F, Dacheux L, Bouchier C, and Bourhy H. 2008. Genomic diversity and evolution of the lyssaviruses. PLoS One, 3: e2057.PubMedCrossRefGoogle Scholar
  4. Desmezieres E, Maillard A P, Gaudin Y, Tordo N, and Perrin P. 2003. Differential stability and fusion activity of Lyssavirus glycoprotein trimers. Virus Res, 91: 181–187.PubMedCrossRefGoogle Scholar
  5. Du J, Zhang Q, Tang Q, Li H, Tao X, Morimoto K, Nadin-Davis S A, and Liang G. 2008. Characterization of human rabies virus vaccine strain in China. Virus Res, 135: 260–266.PubMedCrossRefGoogle Scholar
  6. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice A B, Koprowski H, Schnell M J, and Dietzschold B. 2004. Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci U S A, 101: 16328–16332.PubMedCrossRefGoogle Scholar
  7. Gao Y, Greenfield N J, Cleverley D Z, and Lenard J. 1996. The transcriptional form of the phosphoprotein of vesicular stomatitis virus is a trimer: structure and stability. Biochemistry, 35: 14569–14573.PubMedCrossRefGoogle Scholar
  8. Gaudin Y, Ruigrok R W, Tuffereau C, Knossow M, and Flamand A. 1992. Rabies virus glycoprotein is a trimer. Virology, 187: 627–632.PubMedCrossRefGoogle Scholar
  9. Geue L, Schares S, Schnick C, Kliemt J, Beckert A, Freuling C, Conraths F J, Hoffmann B, Zanoni R, Marston D, McElhinney L, Johnson N, Fooks A R, Tordo N, and Muller T. 2008. Genetic characterisation of attenuated SAD rabies virus strains used for oral vaccination of wildlife. Vaccine, 26: 3227–3235.PubMedCrossRefGoogle Scholar
  10. Gould A R, Kattenbelt J A, Gumley S G, and Lunt R A. 2002. Characterisation of an Australian bat lyssavirus variant isolated from an insectivorous bat. Virus Res, 89: 1–28.PubMedCrossRefGoogle Scholar
  11. Horton D L, McElhinney L M, Marston D A, Wood J L, Russell C A, Lewis N, Kuzmin I V, Fouchier R A, Osterhaus A D, Fooks A R, and Smith D J. 2010. Quantifying antigenic relationships among the lyssaviruses. J Virol, 84: 11841–11848.PubMedCrossRefGoogle Scholar
  12. Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, and Morimoto K. 2003. An improved method for recovering rabies virus from cloned cDNA. J Virol Methods, 107: 229–236.PubMedCrossRefGoogle Scholar
  13. Ito N, Kakemizu M, Ito K A, Yamamoto A, Yoshida Y, Sugiyama M, and Minamoto N. 2001. A comparison of complete genome sequences of the attenuated RC-HL strain of rabies virus used for production of animal vaccine in Japan, and the parental Nishigahara strain. Microbiol Immunol, 45: 51–58.PubMedGoogle Scholar
  14. Jiao W, Yin X, Li Z, Lan X, Li X, Tian X, Li B, Yang B, Zhang Y, and Liu J. 2011. Molecular characterization of China rabies virus vaccine strain. Virol J, 8: 521.PubMedCrossRefGoogle Scholar
  15. Kumar S, Tamura K, and Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 5: 150–163.PubMedCrossRefGoogle Scholar
  16. Kuzmin I V, Mayer A E, Niezgoda M, Markotter W, Agwanda B, Breiman R F, and Rupprecht C E. 2010. Shimoni bat virus, a new representative of the Lyssavirus genus. Virus Res, 149: 197–210.PubMedCrossRefGoogle Scholar
  17. Le Mercier P, Jacob Y, and Tordo N. 1997. The complete Mokola virus genome sequence: structure of the RNA-dependent RNA polymerase. J Gen Virol, 78( Pt 7): 1571–1576.PubMedGoogle Scholar
  18. Meng S L, Yan J X, Xu G L, Nadin-Davis S A, Ming P G, Liu S Y, Wu J, Ming H T, Zhu F C, Zhou D J, Xiao Q Y, Dong G M, and Yang X M. 2007. A molecular epidemiological study targeting the glycoprotein gene of rabies virus isolates from China. Virus Res, 124: 125–138.PubMedCrossRefGoogle Scholar
  19. Metlin A, Paulin L, Suomalainen S, Neuvonen E, Rybakov S, Mikhalishin V, and Huovilainen A. 2008. Characterization of Russian rabies virus vaccine strain RV-97. Virus Res, 132: 242–247.PubMedCrossRefGoogle Scholar
  20. Ming P, Du J, Tang Q, Yan J, Nadin-Davis S A, Li H, Tao X, Huang Y, Hu R, and Liang G. 2009. Molecular characterization of the complete genome of a street rabies virus isolated in China. Virus Res, 143: 6–14.PubMedCrossRefGoogle Scholar
  21. Mochizuki N, Kobayashi Y, Sato G, Itou T, Gomes A A, Ito F H, and Sakai T. 2009. Complete genome analysis of a rabies virus isolate from Brazilian wild fox. Arch Virol, 154: 1475–1488.PubMedCrossRefGoogle Scholar
  22. Nagaraja T, Madhusudana S, and Desai A. 2008. Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes, 36: 449–459.PubMedCrossRefGoogle Scholar
  23. Nel L H, and Markotter W. 2007. Lyssaviruses. Crit Rev Microbiol, 33: 301–324.PubMedCrossRefGoogle Scholar
  24. Roche S, and Gaudin Y. 2002. Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology, 297: 128–135.PubMedCrossRefGoogle Scholar
  25. Roche S, Bressanelli S, Rey F A, and Gaudin Y. 2006. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science, 313: 187–191.PubMedCrossRefGoogle Scholar
  26. Sali A, Potterton L, Yuan F, van Vlijmen H, and Karplus M. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins, 23: 318–326.PubMedCrossRefGoogle Scholar
  27. Song M, Tang Q, Wang D M, Mo Z J, Guo S H, Li H, Tao X Y, Rupprecht C E, Feng Z J, and Liang G D. 2009. Epidemiological investigations of human rabies in China. BMC Infect Dis, 9: 210.PubMedCrossRefGoogle Scholar
  28. Szanto A G, Nadin-Davis S A, and White B N. 2008. Complete genome sequence of a raccoon rabies virus isolate. Virus Res, 136: 130–139.PubMedCrossRefGoogle Scholar
  29. Tao X Y, Tang Q, Li H, Mo Z J, Zhang H, Wang D M, Zhang Q, Song M, Velasco-Villa A, Wu X, Rupprecht C E, and Liang G D. 2009. Molecular epidemiology of rabies in Southern People’s Republic of China. Emerg Infect Dis, 15: 1192–1198.PubMedCrossRefGoogle Scholar
  30. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, and Higgins D G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876–4882.PubMedCrossRefGoogle Scholar
  31. Thoulouze M I, Lafage M, Schachner M, Hartmann U, Cremer H, and Lafon M. 1998. The neural cell adhesion molecule is a receptor for rabies virus. J Virol, 72: 7181–7190.PubMedGoogle Scholar
  32. Tordo N, Poch O, Ermine A, Keith G, and Rougeon F. 1986. Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc Natl Acad Sci U S A, 83: 3914–3918.PubMedCrossRefGoogle Scholar
  33. Tordo N, Poch O, Ermine A, Keith G, and Rougeon F. 1988. Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology, 165: 565–576.PubMedCrossRefGoogle Scholar
  34. Warrilow D, Smith I L, Harrower B, and Smith G A. 2002. Sequence analysis of an isolate from a fatal human infection of Australian bat lyssavirus. Virology, 297: 109–119.PubMedCrossRefGoogle Scholar
  35. Wunner W H, and Dietzschold B. 1987. Rabies virus infection: genetic mutations and the impact on viral pathogenicity and immunity. Contrib Microbiol Immunol, 8: 103–124.PubMedGoogle Scholar
  36. Zhang J, Zhang H L, Tao X Y, Li H, Tang Q, Jiang X Y, and Liang G D. 2012. The full-length genome analysis of a street rabies virus strain isolated in Yunnan province of China. Virol Sin, 27: 204–213.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
  2. 2.Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  3. 3.State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations