Virologica Sinica

, 26:156 | Cite as

Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry

  • Jizhen Wang
  • Balaji Manicassamy
  • Michael Caffrey
  • Lijun Rong


Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

Key words

Receptor-binding domain Ebola virus Glycoprotein Viral Entry 


  1. 1.
    Alvarez C P, Lasala F, Carrillo J, et al. 2002. C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans. J Virol, 76: 6841–6844.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Basu A, Li B, Mills D M, et al. 2011. Identification of a small-molecule entry inhibitor for filoviruses. J Virol, 85: 3106–3119.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Brindley M A, Hughes L, Ruiz A, et al. 2007. Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol, 81: 7702–7709.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Chan S Y, Empig C J, Welte F J, et al. 2001. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell, 106: 117–126.CrossRefPubMedGoogle Scholar
  5. 5.
    Chandran K, Sullivan N J, Felbor U, et al. 2005. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science, 308: 1643–1645.CrossRefPubMedGoogle Scholar
  6. 6.
    Connor R I, Chen B K, Choe S, et al. 1995. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology, 206: 935–944.CrossRefPubMedGoogle Scholar
  7. 7.
    Dolnik O, Volchkova V, Garten W, et al. 2004. Ectodomain shedding of the glycoprotein GP of Ebola virus. Embo J, 23: 2175–2184.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Dube D, Schornberg K L, Shoemaker C J, et al. 2010. Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry. Proc Natl Acad Sci USA, 107: 16637–16642.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ebert D H, Deussing J, Peters C, et al. 2002. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem, 277: 24609–24617.CrossRefPubMedGoogle Scholar
  10. 10.
    Feldmann H, Volchkov V E, Volchkova V A, et al. 2001. Biosynthesis and role of filoviral glycoproteins. J Gen Virol, 82: 2839–28348.PubMedGoogle Scholar
  11. 11.
    He J, Choe S, Walker R, et al. 1995. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69: 6705–6711.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Huang I C, Bosch B J, Li F, et al. 2006. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem, 281: 3198–3203.CrossRefPubMedGoogle Scholar
  13. 13.
    Ito H, Watanabe S, Takada A, et al. 2001. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol, 75: 1576–1580.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Jeffers S A, Sanders D A, Sanchez A. 2002. Covalent modifications of the ebola virus glycoprotein. J Virol, 76: 12463–12472.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Jiang H, Wang J, Manicassamy B, et al. 2009. The role of the charged residues of the GP2 helical regions in Ebola entry. Virol Sin, 24: 121–135.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Kaletsky R L, Simmons G, Bates P. 2007. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol, 81:13378–13384.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kuhn J H, Radoshitzky S R, Guth A C, et al. 2006. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem, 281: 15951–15958.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee J E, Fusco M L, Hessell A J, et al. 2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454: 177–182.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Leffel E K, Reed D S. 2004. Marburg and Ebola viruses as aerosol threats. Biosecur Bioterror, 2: 186–191.CrossRefPubMedGoogle Scholar
  20. 20.
    Leroy E M, Kumulungui B, Pourrut X, et al. 2005. Fruit bats as reservoirs of Ebola virus. Nature, 438: 575–576.CrossRefPubMedGoogle Scholar
  21. 21.
    Leroy E M, Rouquet P, Formenty P, et al. 2004. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science, 303: 387–390.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin G, Simmons G, Pohlmann S, et al. 2003. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol, 77: 1337–1346.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Manicassamy B, Rong L. 2009. Expression of Ebolavirus glycoprotein on the target cells enhances viral entry. Virol J, 6: 75.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Manicassamy B, Wang J, Jiang H, et al. 2005. Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. J Virol 79: 4793–4805.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Manicassamy B, Wang J, Rumschlag E, et al. 2007. Characterization of Marburg virus glycoprotein in viral entry. Virology, 358: 79–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Mpanju O M, Towner J S, Dover J E, et al. 2006. Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res, 121: 205–214.CrossRefPubMedGoogle Scholar
  27. 27.
    Naldini L, Blomer U, Gage F H, et al. 1996. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A, 93: 11382–11388.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Neumann G, Feldmann H, Watanabe S, et al. 2002. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol, 76: 406–410.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Neumann G, Geisbert T W, Ebihara H, et al. Daddario-DiCaprio, H. Feldmann, and Y. Kawaoka. 2007. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol, 81: 2995–2998.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Pager C T, Craft W W, Patch Jr J, et al. 2006. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology, 346: 251–257.CrossRefPubMedGoogle Scholar
  31. 31.
    Qiu Z, Hingley S T, Simmons G, et al. 2006. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol, 80: 5768–5776.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Saeed M F, Kolokoltsov A A, Albrecht T, et al. 2010. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog, 6(9).pii: e1001110.Google Scholar
  33. 33.
    Saeed M F, Kolokoltsov A A, Freiberg A N, et al. 2008. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog, 4:e1000141.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Sanchez A, Kiley M P, Holloway B P, et al. 1993. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res, 29: 215–240.CrossRefPubMedGoogle Scholar
  35. 35.
    Sanchez A, Trappier S G, Mahy B W, et al. 1996. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A, 93: 3602–3607.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Sanchez A, Trappier S G, Stroher U, et al. 1998. Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology, 240: 138–146.CrossRefPubMedGoogle Scholar
  37. 37.
    Schornberg K, Matsuyama S, Kabsch K, et al. 2006. Role of endosomal cathepsins in entry mediated by the ebola virus glycoprotein. J Virol, 80: 4174–4178.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Shimojima M, Takada A, Ebihara H, et al. 2006. Tyro3 family-mediated cell entry of ebola and marburg viruses. J Virol, 80: 10109–10116.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Simmons G, Gosalia D N, Rennekamp A J, et al. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA, 102: 11876–11881.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Simmons G, Wool-Lewis R J, Baribaud F, et al. 2002. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol, 76: 2518–2528.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Simon J H, Fouchier R A, Southerling T E, et al. 1997. The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J Virol, 71: 5259–5267.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Takada A, Fujioka K, Tsuiji M, et al. 2004. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol, 78: 2943–2947.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Takada A, Robison C, Goto H, et al. 1997. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA, 94: 14764–14769.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Volchkov V E, Becker S, Volchkova V A, et al. 1995. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology, 214: 421–430.CrossRefPubMedGoogle Scholar
  45. 45.
    Volchkov V E, Feldmann H, Volchkova V A. 1998. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A, 95: 5762–5767.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Warren T K, Warfield K L, Wells J, et al. 2010. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother, 54: 2152–2159.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Wilson J A, Bray M, Bakken R, et al. 2001. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology, 286: 384–390.CrossRefPubMedGoogle Scholar
  48. 48.
    Wool-Lewis R, Bates P. 1998. Characterization of Ebola virus entry by using pseudotyped viruses: Identification of receptor deficient cell lines. J Virol, 72: 3155–3160.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Wool-Lewis R, Bates P. 1999. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol, 73: 1419–1426.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Yang Z Y, Duckers H J, Sullivan N J, et al. 2000. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med, 6:886–889.CrossRefPubMedGoogle Scholar
  51. 51.
    Yermolina M V, Wang J, Caffrey M, et al. 2011. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J Med Chem, 54: 765–781.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jizhen Wang
    • 1
  • Balaji Manicassamy
    • 1
  • Michael Caffrey
    • 2
  • Lijun Rong
    • 1
  1. 1.Department of Microbiology and Immunology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biochemistry and Molecular Genetics, College of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations