Virologica Sinica

, Volume 24, Issue 1, pp 59–64 | Cite as

Positive selection analysis of VP1 Genes of worldwide human enterovirus 71 viruses

  • Wei-feng ShiEmail author
  • Zhong Zhang
  • Ai-she Dun
  • Yan-zhou Zhang
  • Guang-fu Yu
  • Dong-ming Zhuang
  • Chao-dong ZhuEmail author


Human enterovirus 71 viruses have been long circulating throughout the world. In this study, we performed a positive selection analysis of the VP1 genes of capsid proteins from Enterovirus 71 viruses. Our results showed that although most sites were under negative or neutral evolution, four positions of the VP1 genes were under positive selection pressure. This might account for the spread and frequent outbreaks of the viruses and the enhanced neurovirulence. In particular, position 98 might be involved in neutralizing antibodies, modulating the virus-receptor interaction and enhancing the virulence of the viruses. Moreover, both positions 145 and 241 might correlate to determine the receptor specificity. However, these positions did not display much difference in amino acid polymorphism. In addition, no position in the VP1 genes of viruses isolated from China was under positive selection.

Key words

Human enterovirus 71 Positive selection pressure VP1 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown B A, Pallansch M A. 1995. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res, 39(2–3): 195–205.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown B A, Steven Oberste M, Alexander J P, et al. 1999. Molecular Epidemiology and Evolution of Enterovirus 71 Strains Isolated from 1970 to 1998. J Virol, 73(12): 9969–9975.PubMedGoogle Scholar
  3. 3.
    Bush R M, Fitch W M, Bender C A, et al. 1999. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol, 16: 1457–1465.PubMedGoogle Scholar
  4. 4.
    Campitelli L, Ciccozzi M, Salemi M, et al. 2006. H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997-2004). J Gen Virol, 87: 955–960.PubMedCrossRefGoogle Scholar
  5. 5.
    Cardosa M J, Krishnan S, Tio P H, et al. 1999. Isolation of subgenus B adenovirus during a fatal outbreak of enterovirus 71-associated hand, foot and mouth disease in Sibu, Sarawak. Lancet, 354: 987–991.PubMedCrossRefGoogle Scholar
  6. 6.
    Cardosa M J, Perera D, Brown B A, et al. 2003. Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerg Infect Dis, 9(4): 461–468.PubMedGoogle Scholar
  7. 7.
    Chan L G, Parashar U D, Lye M S, et al. 2000. Deaths of children duringan outbreak of hand, foot and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. Clin Infect Dis, 31: 678–683.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan Y F, AbuBaker S. 2004. Recombinant human enterovirus 71 in hand, foot and mouth disease patients. Emerg Infect Dis, 10(8): 1468–1470.PubMedGoogle Scholar
  9. 9.
    Dong X N, Ying J, Chen Y H. 2007. Molecular epidemiology and evolution of worldwide enterovirus 71 strains isolated from 1970 to 2004. Chin Sci Bull, 52(11):1484–1490CrossRefGoogle Scholar
  10. 10.
    Fitch W M, Leiter J M E, Li X, et al. 1991. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci USA, 88: 4270–4274.PubMedCrossRefGoogle Scholar
  11. 11.
    Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52: 696–704.PubMedCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Ina Y, Gojobori T. 1994. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc Natl Acad Sci USA, 91: 8388–8392.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim S, Smith T J, Chapman M S, et al. 1989. Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol, 210: 91–111.PubMedCrossRefGoogle Scholar
  15. 15.
    Kosakovsky Pond S L, Frost S D W, Muse S V. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21: 676–679.CrossRefGoogle Scholar
  16. 16.
    Lambert C, Leonard N, De Bolle X, et al. 2002. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 18: 1250–1256.PubMedCrossRefGoogle Scholar
  17. 17.
    Li L, He Y, Yang H, et al. 2005. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People’s Republic of China. J Clin Microbiol, 43(8): 3835–3839.PubMedCrossRefGoogle Scholar
  18. 18.
    Mateu M G. 1995. Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res, 38: 1–24.PubMedCrossRefGoogle Scholar
  19. 19.
    McMinn P, Lindsay K, Perera D, et al. 2001. Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J Virol, 75(16): 7732–7738.PubMedCrossRefGoogle Scholar
  20. 20.
    Minor P D. 1990. Antigenic structure of picornaviruses. Curr Top Microbiol Immunol, 161: 121–154.PubMedGoogle Scholar
  21. 21.
    Oberste M S, Maher K, Kilpatrick D R, et al. 1999. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application to Picornavirus Classification. J Virol, 73: 1941–1948.PubMedGoogle Scholar
  22. 22.
    Olson N H, Kolatkar P R, Oliveira M A, et al. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA, 90: 507–511.PubMedCrossRefGoogle Scholar
  23. 23.
    Rossman M G, Arnold A, Erickson J W, et al. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 317: 145–153.CrossRefGoogle Scholar
  24. 24.
    Schmidt N J, Lennette E H, Ho H H. 1974. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 129:304–309.PubMedGoogle Scholar
  25. 25.
    Shimizu H, Utama A, Onnimala N, et al. 2004. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr Int, 46(2): 231–235.PubMedCrossRefGoogle Scholar
  26. 26.
    Reimann B Y, Zell R, Kandolf R. 1991. Mapping of a neutralizing antigenic site of Coxsackievirus B4 by construction of an antigen chimera. J Virol, 65(7): 3475–3480PubMedGoogle Scholar
  27. 27.
    Yoke-Fun C, AbuBakar S. 2006. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol, 6: 74.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Wei-feng Shi
    • 1
    Email author
  • Zhong Zhang
    • 2
  • Ai-she Dun
    • 2
  • Yan-zhou Zhang
    • 3
  • Guang-fu Yu
    • 2
  • Dong-ming Zhuang
    • 2
  • Chao-dong Zhu
    • 3
    Email author
  1. 1.Institute of Life SciencesTaishan Medical CollegeTaianChina
  2. 2.Department of Basic MedicineTaishan Medical CollegeTaianChina
  3. 3.Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations