Advertisement

Virologica Sinica

, 23:406 | Cite as

Nuclear egress of herpesviruses

  • Richard J. Roller
Article

Abstract

Herpesviruses assemble and fill their capsids in the infected cell nucleus, and must then move this enormous macromolecular assembly across the nuclear membrane and into the cytoplasm. Doing so is a complex, multi-step process that involves envelopment of the capsid at the inner nuclear membrane and de-envelopment by fusion with the outer nuclear membrane. This process is orchestrated by viral proteins, but requires the modification of cellular structures and mechanisms including the nuclear lamina. In this review I summarize recent research on the mechanism of nuclear envelopment and the viral and cellular systems involved in its execution.

Key words

Herpesvirus Egress Envelopment Nuclear lamina 

CLC number

Q786 

References

  1. 1.
    Aebi U, Cohn J, Buhle L, et al. 1986. The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323: 560–564.PubMedCrossRefGoogle Scholar
  2. 2.
    al-Kobaisi M F, Rixon F J, McDougall I, et al. 1991. The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology, 180: 380–388.PubMedCrossRefGoogle Scholar
  3. 3.
    Baines J D, Roizman B. 1992. The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells. J Virol, 66: 5168–5174.PubMedGoogle Scholar
  4. 4.
    Baines J D, Ward P L, Campadelli-Fiume G, et al. 1991. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol, 65: 6414–6424.PubMedGoogle Scholar
  5. 5.
    Bjerke S L, Roller R. 2006. Roles for herpes simplex type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology, 347(2): 261–276.PubMedCrossRefGoogle Scholar
  6. 6.
    Calistri A, Sette P, Salata C, et al. 2007. Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol, 81: 11468–11478.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang Y E V S, Krug C, Sears P W, Roizman A E B. 1997. The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol, 71: 8307–8315.PubMedGoogle Scholar
  8. 8.
    Chen B J, Lamb, R A. 2008. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology, 372: 221–232.PubMedCrossRefGoogle Scholar
  9. 9.
    Church, G A, Wilson D W. 1997. Study of herpes simplex virus maturation during a synchronous wave of assembly. J Virol, 71: 3603–3612.PubMedGoogle Scholar
  10. 10.
    Coller K E, Lee J I, Ueda A, et al. 2007. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol, 81: 11790–11797.PubMedCrossRefGoogle Scholar
  11. 11.
    Courvalin J C, Segil N, Blobel G, et al. 1992. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase. J Biol Chem, 267: 19035–19038.PubMedGoogle Scholar
  12. 12.
    Crump C M, Yates C, Minson T. 2007. Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol, 81: 7380–7387.PubMedCrossRefGoogle Scholar
  13. 13.
    Darlington R W, Moss L H. 1968. Herpesvirus envelopment. J Virol, 2: 49–55.Google Scholar
  14. 14.
    Dechat T, Gotzmann J, Stockinger A, et al. 1998. Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J, 17: 4887–4902.PubMedCrossRefGoogle Scholar
  15. 15.
    Desai P, Sexton G L, McCaffery J M, et al. 2001. A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol, 75: 10259–10271.PubMedCrossRefGoogle Scholar
  16. 16.
    Desai P J. 2000. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol, 74: 11608–11618.PubMedCrossRefGoogle Scholar
  17. 17.
    Dreger M, Otto H, Neubauer G, et al. 1999. Identification of phosphorylation sites in native lamina-associated polypeptide 2 beta. Biochemistry, 38: 9426–9434.PubMedCrossRefGoogle Scholar
  18. 18.
    Ellis J A, Craxton M, Yates J R, et al. 1998. Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci, 111: 781–792.PubMedGoogle Scholar
  19. 19.
    Falke D, Siegert R, Vogell W. 1959. Electron microscopic findings on the problem of double membrane formation in herpes simplex virus. Arch Gesamte Virusforsch, 9: 484–496.PubMedCrossRefGoogle Scholar
  20. 20.
    Farnsworth A, Wisner T W, Webb M, et al. 2007. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci USA, 104: 10187–10192.PubMedCrossRefGoogle Scholar
  21. 21.
    Feierbach B, Piccinotti S, Bisher M, et al. 2006. Alphaherpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathogens, 2: e85.PubMedCrossRefGoogle Scholar
  22. 22.
    Foisner R, Gerace L. 1993. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell, 73: 1267–1279.PubMedCrossRefGoogle Scholar
  23. 23.
    Forest T, Barnard S, Baines J D. 2005. Active intranuclear movement of herpesvirus capsids. Nat Cell Biol, 7: 429–431.PubMedCrossRefGoogle Scholar
  24. 24.
    Foster T P, Melancon J M, Baines J D, et al. 2004. The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol, 78: 5347–5357.PubMedCrossRefGoogle Scholar
  25. 25.
    Fuchs W, Klupp B G, Granzow H, et al. 2002. The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol, 76: 364–378.PubMedCrossRefGoogle Scholar
  26. 26.
    Fulmer P A, Melancon J M, Baines J D, et al. 2007. UL20 protein functions precede and are required for the UL11 functions of herpes simplex virus type 1 cytoplasmic virion envelopment. J Virol, 81: 3097–3108.PubMedCrossRefGoogle Scholar
  27. 27.
    Granzow H, Klupp B G, Fuchs W, et al. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J Virol, 75: 3675–3684.PubMedCrossRefGoogle Scholar
  28. 28.
    Gruenbaum Y, Margalit A, Goldman R D, et al. 2005. The nuclear lamina comes of age. Nat Rev Mol Cell Biol, 6: 21–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Heald R, McKeon F. 1990. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell, 61: 579–589.PubMedCrossRefGoogle Scholar
  30. 30.
    Hofemeister H, O’Hare P. 2008. Nuclear pore composition and gating in herpes simplex virus-infected cells. J Virol, 82: 8392–8399.PubMedCrossRefGoogle Scholar
  31. 31.
    Holmer L, Worman H J. 2001. Inner nuclear membrane proteins: functions and targeting. Cell Mol Life Sci, 58: 1741–1747.PubMedCrossRefGoogle Scholar
  32. 32.
    Jing X, Cerveny M, Yang K, et al. 2004. Replication of herpes simplex virus 1 depends on the gamma 134.5 functions that facilitate virus response to interferon and egress in the different stages of productive infection. J Virol, 78: 7653–7666.PubMedCrossRefGoogle Scholar
  33. 33.
    Klupp B, Altenschmidt J, Granzow H, et al. 2008. Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol, 82: 6299–6309.PubMedCrossRefGoogle Scholar
  34. 34.
    Klupp B G, Granzow H, Fuchs W, et al. 2007. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA, 104:7241–7246.PubMedCrossRefGoogle Scholar
  35. 35.
    Klupp B G, Granzow H, Keil G M, et al. 2006. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol, 80: 6235–6346.PubMedCrossRefGoogle Scholar
  36. 36.
    Klupp B G, Granzow H, Mettenleiter T C. 2001. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol, 82: 2363–2371.PubMedGoogle Scholar
  37. 37.
    Klupp B G, Granzow H, Mettenleiter T C. 2000. Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol, 74: 10063–10073.PubMedCrossRefGoogle Scholar
  38. 38.
    Lake C M, Hutt-Fletcher L M. 2004. The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology, 320: 99–106.PubMedCrossRefGoogle Scholar
  39. 39.
    Leach N, Bjerke S L, Christensen D K, et al. 2007. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol, 81: 10792–10803.PubMedCrossRefGoogle Scholar
  40. 40.
    Leuzinger H, Ziegler U, Schraner E M, et al. 2005. Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol, 79: 13047–13059.PubMedCrossRefGoogle Scholar
  41. 41.
    Liang L, Baines J D. 2005. Identification of an essential domain in the herpes simplex virus 1 UL34 protein that is necessary and sufficient to interact with UL31 protein. J Virol, 79: 3797–3806.PubMedCrossRefGoogle Scholar
  42. 42.
    Luxton G W, Lee J I, Haverlock-Moyns S, et al. 2006. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol, 80: 201–209.PubMedCrossRefGoogle Scholar
  43. 43.
    McNab A R D, Person P, Roof S, et al. 1998. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol, 72: 1060–1070.PubMedGoogle Scholar
  44. 44.
    Mettenleiter T C, Minson T. 2006. Egress of Alphaherpesviruses. J Virol, 80:1610–1611.PubMedCrossRefGoogle Scholar
  45. 45.
    Morris J B, Hofemeister H, O’Hare P. 2007. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol, 81: 4429–4437.PubMedCrossRefGoogle Scholar
  46. 46.
    Mou F, Forest T, Baines J D. 2007. Us3 of Herpes Simplex type 1 Encodes a Promiscuous Protein Kinase That Phosphorylates and Alters Localization of Lamin A/C in Infected Cells. J Virol, 81: 6459–6470.PubMedCrossRefGoogle Scholar
  47. 47.
    Muranyi W, Haas J, Wagner M, et al. 2002. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science, 297: 854–857.PubMedCrossRefGoogle Scholar
  48. 48.
    Panorchan P, Schafer B W, Wirtz D, et al. 2004. Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J Biol Chem, 279: 43462–43467.PubMedCrossRefGoogle Scholar
  49. 49.
    Park R, Baines J. 2006. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol, 80: 494–504.PubMedCrossRefGoogle Scholar
  50. 50.
    Patrizi G, Middelkamp J N, Reed C A. 1967. Reduplication of nuclear membranes in tissue-culture cells infected with guinea-pig cytomegalovirus. Am J Pathol, 50: 779–790.PubMedGoogle Scholar
  51. 51.
    Peter M, Nakagawa J, Doree M, et al. 1990. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell, 61: 591–602.PubMedCrossRefGoogle Scholar
  52. 52.
    Poon A P, Roizman B. 1993. Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J Virol, 67:4497–5503.PubMedGoogle Scholar
  53. 53.
    Rémillard-Labrosse G, Guay G, Lippé R. 2006. Reconstitution of herpes simplex virus type 1 nuclear capsid egress in vitro. J Virol, 80: 9741–9753.PubMedCrossRefGoogle Scholar
  54. 54.
    Reynolds A E, Liang L, Baines J D. 2004. Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol, 78: 5564–5575.PubMedCrossRefGoogle Scholar
  55. 55.
    Reynolds A E, Ryckman B J, Baines J D, et al. 2001. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol, 75: 8803–8817.PubMedCrossRefGoogle Scholar
  56. 56.
    Reynolds A E, Wills E G, Roller R J, et al. 2002. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol, 76: 8939–8952.PubMedCrossRefGoogle Scholar
  57. 57.
    Roizman B, Sears A E. 1996. Herpes simplex viruses and their replication, In: Fields Virology (Fields B N, Knipe D M, Howley P M, et al ed.), Third edition ed, vol. 2. Lippincott-Raven Publishers: Philadelphia, USA, p2231–2295.Google Scholar
  58. 58.
    Roller R J, Zhou Y, Schnetzer R, et al. 2000. Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. J Virol, 74: 117–129.PubMedCrossRefGoogle Scholar
  59. 59.
    Ruebner B H, Miyai K, Slusser R J, et al. 1964. Mouse cytomegalovirus infection. An electron microscopic study of hepatic parenchymal cells. Am J Pathol, 44: 799–821.PubMedGoogle Scholar
  60. 60.
    Ryckman B J, Roller R J. 2004. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol, 78: 399–412.PubMedCrossRefGoogle Scholar
  61. 61.
    Salmon B, Cunningham C, Davison A J, et al. 1998. The herpes simplex virus type 1 U (L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol, 72: 3779–3788,.PubMedGoogle Scholar
  62. 62.
    Santarelli R, Farina A, Granato M, et al. 2008. Identification and characterization of the product encoded by ORF69 of Kaposi’s sarcoma-associated herpesvirus. J Virol, 82: 4562–4572.PubMedCrossRefGoogle Scholar
  63. 63.
    Schnee M, Ruzsics Z, Bubeck A, et al. 2006. Common and Specific Properties of Herpesvirus UL34/UL31 Protein Family Members Revealed by Protein Complementation Assay. J Virol, 80:11658–11666.PubMedCrossRefGoogle Scholar
  64. 64.
    Schumacher D, Tischer B K, Trapp S, et al. 2005. The protein encoded by the US3 orthologue of Marek’s disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol, 79: 3987–3997.PubMedCrossRefGoogle Scholar
  65. 65.
    Shipkey F H, Erlandson R A, Bailey R B, et al. 1967. Virus biographies. II. Growth of herpes simplex virus in tissue culture. Exp Mol Pathol, 6:39–67.PubMedCrossRefGoogle Scholar
  66. 66.
    Siminoff P, Menefee M G. 1966. Normal and 5-bromo-deoxyuridine-inhibited development of herpes simplex virus. An electron microscope study. Exp Cell Res, 44: 241–255.PubMedCrossRefGoogle Scholar
  67. 67.
    Simpson-Holley M, Colgrove R C, Nalepa G, et al. 2005. Identification and Functional Evaluation of Cellular and Viral Factors Involved in the Alteration of Nuclear Architecture during Herpes Simplex Virus 1 Infection. J Virol, 79: 12840–12851.PubMedCrossRefGoogle Scholar
  68. 68.
    Simpson-Holly M, Baines J, Roller R, et al. 2004. Herpes simplex virus 1 UL31 and UL34 promote the late maturation of viral replication compartments to the nuclear periphery. J Virol, 78: 5591–5600.CrossRefGoogle Scholar
  69. 69.
    Skepper J N, Whiteley A, Browne H, et al. 2001. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment → deenvelopment → reenvelopment pathway. J Virol, 75: 5697–5702.PubMedCrossRefGoogle Scholar
  70. 70.
    Stackpole C W. 1969. Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumor transplants maintained at low temperature. J Virol, 4: 75–93.PubMedGoogle Scholar
  71. 71.
    Stoker M G, Smith K M, Ross R W. 1958. Electron microscope studies of HeLa cells infected with herpes virus. J Gen Microbiol, 19: 244–249.PubMedGoogle Scholar
  72. 72.
    Trus B L, Newcomb W W, Cheng N, et al. 2007. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Mol Cell, 26: 479–489.PubMedCrossRefGoogle Scholar
  73. 73.
    Tseng Y, Lee J S, Kole T P, et al. 2004. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci, 117: 2159–2167.PubMedCrossRefGoogle Scholar
  74. 74.
    Ward P L, Ogle W O, Roizman B. 1996. Assemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. J Virol, 70: 4623–4631.PubMedGoogle Scholar
  75. 75.
    Whiteley A, Bruun B, Minson T, et al. 1999. Effects of targeting herpes simplex virus type 1 gD to the endoplasmic reticulum and trans-Golgi network. J Virol, 73: 9515–9520.PubMedGoogle Scholar
  76. 76.
    Wild P, Engels M, Senn C, et al. 2005. Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells. J Virol, 79: 1071–1083.PubMedCrossRefGoogle Scholar
  77. 77.
    Worman H J, Courvalin J C. 2005. Nuclear envelope, nuclear lamina, and inherited disease. Int Rev Cytol, 246: 231–279.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of IowaIowa CityUSA

Personalised recommendations