Advertisement

Central Composite Design for Optimization of Zoledronic Acid Loaded PLGA Nanoparticles

  • Ongun Mehmet Saka
  • Umut Can Öz
  • Berrin Küçüktürkmen
  • Burcu Devrim
  • Asuman Bozkır
Original Article
  • 30 Downloads

Abstract

Purpose

Zoledronic acid (ZA) is one of the drugs used clinically for the treatment of osteoporosis, and its therapeutic effect is due to the inhibition of osteoclastic cells leading to bone resorption. The aim of this study is developing an optimization method for poly(lactide-co-glycolide) (PLGA) nanoparticles of ZA which is intended for local application to enable guided bone regeneration.

Methods

Three formulation parameters (ZA content, PLGA/Pluronic F68 ratio, and organic to aqueous phase ratio) were optimized to evaluate their effects on particle size (Y1), polydispersity index (PDI) (Y2), zeta potential (Y3), and entrapment efficiency (Y4) utilizing central composite experimental design (CCD). Interaction among components was studied by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis. Morphology of nanoparticles was visualized with transmission electron microscopy (TEM). Stability studies of nanoparticles were also carried out for 6 months.

Results

The results revealed that formulation parameters significantly affected Y1, Y2, Y3, and Y4 of the nanoparticles. The developed quadratic model showed high correlation (R2 > 0.84) between predicted response and evaluated parameters. Spherical nanoparticles with low mean particle size (< 106.0 nm) and high encapsulation efficiency (> 39.54%) were obtained with the optimized nanoparticle formulation and maintained colloidal stability for 6 months.

Conclusions

The use of CCD for the optimization of ZA-loaded PLGA nanoparticles has provided accessibility to the formulation with optimum properties with less experimental procedure and therefore presents an important model for predicting the properties of nanoparticles prepared with PLGA polymer commonly used in the field of drug delivery.

Keywords

Central composite design Optimization Zoledronic acid PLGA Nanoparticle 

Notes

Funding Information

This research is funded by the Turkish Scientific and Technological Research Council (TÜBİTAK grant number 112S533).

References

  1. 1.
    Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.Google Scholar
  2. 2.
    Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer. 2008;8:103.CrossRefPubMedGoogle Scholar
  3. 3.
    Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000;33:94–101.CrossRefGoogle Scholar
  4. 4.
    Martins C, Sousa F, Araujo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7:1.Google Scholar
  5. 5.
    Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–31.CrossRefGoogle Scholar
  6. 6.
    Kucukturkmen B, Devrim B, Saka OM, Yilmaz S, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm. 2017;43(1):12–21.CrossRefGoogle Scholar
  7. 7.
    Lee D, Heo DN, Kim HJ, Ko WK, Lee SJ, Heo M, et al. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep. 2016;6:27336.CrossRefPubMedGoogle Scholar
  8. 8.
    Teotia AK, Gupta A, Raina DB, Lidgren L, Kumar A. Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl Mater Interfaces. 2016;8(17):10775–87.CrossRefGoogle Scholar
  9. 9.
    Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent. 1993;13(1):29–45.Google Scholar
  10. 10.
    Watzinger F, Luksch J, Millesi W, Schopper C, Neugebauer J, Moser D, et al. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg. 2000;38(4):312–5.CrossRefGoogle Scholar
  11. 11.
    Bozkir A, Saka OM. Formulation and investigation of 5-FU nanoparticles with factorial design-based studies. Farmaco. 2005;60(10):840–6.CrossRefGoogle Scholar
  12. 12.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.CrossRefGoogle Scholar
  13. 13.
    Sah AK, Suresh PK, Verma VK. PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artif Cells Nanomed Biotechnol. 2017;45(6):1156–64.CrossRefGoogle Scholar
  14. 14.
    Ali H, Weigmann B, Collnot EM, Khan SA, Windbergs M, Lehr CM. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa- pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33(5):1085–92.CrossRefGoogle Scholar
  15. 15.
    Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother. 2018;106:1461–8.CrossRefGoogle Scholar
  16. 16.
    Akl MA, Kartal-Hodzic A, Oksanen T, Ismael HR, Afouna MM, Yliperttula M, et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol. 2016;32:10–20.CrossRefGoogle Scholar
  17. 17.
    Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670–81.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Convergence. 2016;3(3):1–7.Google Scholar
  20. 20.
    Chen Z, Liu D, Wang J, Wu L, Li W, Chen J, et al. Development of nanoparticles-in-microparticles system for improved local retention after intra-articular injection. Drug Deliv. 2014;21:342–50.CrossRefGoogle Scholar
  21. 21.
    Al-Tahami K. Preparation, characterization, and in vitro release of ketoprofen loaded alginate microspheres. Int J App Pharm. 2014;6:4–7.Google Scholar
  22. 22.
    Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MNV. Design of biodegradable nanoparticles for oral delivery of doxorubicin: ın vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26(3):492–501.CrossRefGoogle Scholar
  23. 23.
    Kola Srinivas NS, Verma R, Pai Kulyadi G, Kumar L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine. 2016;12:15–28.CrossRefPubMedGoogle Scholar
  24. 24.
    Ali H, Singh SK. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. 2018;36(6):695–709.Google Scholar
  25. 25.
    Gindy ME, Panagiotopoulos AZ, Prud'homme RK. Composite block copolymer stabilized nanoparticles simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir. 2008;24:83–90.CrossRefGoogle Scholar
  26. 26.
    Turk CT, Oz UC, Serim TM, Hascicek C. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech. 2014;15(1):161–76.CrossRefGoogle Scholar
  27. 27.
    Su R, Yang L, Wang Y, Yu S, Guo Y, Deng J, et al. Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB. Int J Nanomedicine. 2017;12:5203–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev. 2011;31(5):716–56.Google Scholar
  29. 29.
    Xie S, Zhu L, Dong Z, Wang X, Wang Y, Li X, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surfaces B Biointerfaces. 2011;83(2):382–7.CrossRefGoogle Scholar
  30. 30.
    Olejnik C, Falgayrac G, During A, Cortet B, Penel G. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect. Bone. 2016;89:32–9.CrossRefGoogle Scholar
  31. 31.
    Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design. J Liposome Res. 2014;24(3):171–81.CrossRefGoogle Scholar
  32. 32.
    Ahmed TA, Aljaeid BM. A potential in situ gel formulation loaded with novel fabricated poly (lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine. 2017;12:1863–75.CrossRefPubMedGoogle Scholar
  33. 33.
    Khajuria DK, Razdan R, Mahapatra DR. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur J Pharm Sci. 2015;66:173–83.CrossRefGoogle Scholar
  34. 34.
    Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 2013;14(2):585–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Aronhime J, Lifshitz-Liron R. Zoledronic acid crystal forms, zoledronate sodium salt crystal forms, amorphous zoledronate sodium salt, and processes for their preparation. EP1567533B1. 2009.Google Scholar
  36. 36.
    Alimohammadi S, Salehi R, Amini N, Davaran S. Synthesis and physicochemical characterization of biodegradable PLGA-based magnetic nanoparticles containing amoxicilin. Bull Kor Chem Soc. 2012; 33 (10): 3225–3232.CrossRefGoogle Scholar
  37. 37.
    Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly (lactic-co-glycolic acid) nanoparticles. J Drug Target. 2015;23(9):832–46.CrossRefGoogle Scholar
  38. 38.
    Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine. 2007;3(4):246–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyAnkara UniversityAnkaraTurkey

Personalised recommendations