Advertisement

Journal of Pharmaceutical Innovation

, Volume 11, Issue 3, pp 264–278 | Cite as

The Study of the Influence of Formulation and Process Variables on the Functional Attributes of Simvastatin–Phospholipid Complex

  • Suprit D. Saoji
  • Veena S. Belgamwar
  • Sanket S. Dharashivkar
  • Aniket A. Rode
  • Connor Mack
  • Vivek S. DaveEmail author
Original Article

Abstract

Purpose

The aim of the present study was to examine the influence of the formulation and process variables on the entrapment efficiency of simvastatin–phospholipid complex (SPC), prepared with a goal of improving the solubility and permeability of simvastatin.

Methods

The SPC was prepared using a solvent evaporation method. The influence of formulation and process variables on simvastatin entrapment was assessed using a central composite design. An additional SPC was prepared using the optimized variables from the developed quadratic model. This formulation was characterized for its physical–chemical properties. The functional attributes of the optimized SPC formulation were analyzed by apparent aqueous solubility analysis, in vitro dissolution studies, dissolution efficiency analysis, and ex vivo permeability studies.

Results

The factors studied were found to significantly influence the entrapment efficiency. The developed model was validated using the optimized levels of formulation and process variables. The physical–chemical characterization confirmed a formation of the complex. The optimized SPC demonstrated over 25-fold higher aqueous solubility of simvastatin, compared to that of pure simvastatin. The optimized SPC exhibited a significantly higher rate and extent of simvastatin dissolution (>98 %), compared to that of pure simvastatin (∼16 %). The calculated dissolution efficiency was also found to be significantly higher for the SPC (∼54 %), compared to that of pure simvastatin (∼8 %). Finally, the optimized SPC exhibited a significantly higher simvastatin permeability (>78 %), compared to that of pure simvastatin (∼11 %).

Conclusion

The present study shows that SPC can be a promising strategy for improving the delivery of simvastatin and similar drugs with low aqueous solubility.

Keywords

BCS class II Solubility Dissolution QbD Design of Experiment (DOE) Phospholipids 

References

  1. 1.
    D Marco Alexander Berg V, Hans M, Streekstra H. Method for the production of simvastatin. Google Patents. 2009.Google Scholar
  2. 2.
    Bodi I, Korodi F, Salyi S, Szabo C. Process for preparing simvastatin having controlled ranges of simvastatin dimer content. Google Patents. 2004.Google Scholar
  3. 3.
    Cheng H, Sutton SC, Pipkin JD, Zentner GM, Rogers JD, Schwartz JI, et al. Evaluation of sustained/controlled-release dosage forms of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors in dogs and humans. Pharm Res. 1993;10(11):1683–7.CrossRefPubMedGoogle Scholar
  4. 4.
    El-Say KM, Ahmed TA, Badr-Eldin SM, Fahmy U, Aldawsari H, Ahmed OA. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: ex vivo and in vivo evaluation. Pharm Dev Technol. 2014:1–8. doi: 10.3109/10837450.2014.938859.
  5. 5.
    Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther. 1999;84(3):413–28. doi: 10.1016/S0163-7258(99)00045-5.CrossRefPubMedGoogle Scholar
  6. 6.
    Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73. doi: 10.1016/j.ijpharm.2003.12.028. CrossRefPubMedGoogle Scholar
  7. 7.
    Patel JK, Sutariya VB. Micronisation of simvastatin by the supercritical antisolvent technique: in vitro-in vivo evaluation. J Microencapsul. 2015;32(2):193–200. doi: 10.3109/02652048.2014.995726. CrossRefPubMedGoogle Scholar
  8. 8.
    Sonar PA, Behera AL, Banerjee SK, Gaikwad DD, Harer SL. Preparation and characterization of simvastatin solid dispersion using skimmed milk. Drug Dev Ind Pharm. 2015;41(1):22–7. doi: 10.3109/03639045.2013.845836. CrossRefPubMedGoogle Scholar
  9. 9.
    Thomas N, Holm R, Garmer M, Karlsson JJ, Mullertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219–27. doi: 10.1208/s12248-012-9433-7. CrossRefPubMedGoogle Scholar
  10. 10.
    Ungaro F, Giovino C, Catanzano O, Miro A, Mele A, Quaglia F, et al. Use of cyclodextrins as solubilizing agents for simvastatin: effect of hydroxypropyl-β-cyclodextrin on lactone/hydroxyacid aqueous equilibrium. Int J Pharm. 2011;404(1–2):49–56. doi: 10.1016/j.ijpharm.2010.10.050. CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Z, Bu H, Gao Z, Huang Y, Gao F, Li Y. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm. 2010;394(1–2):147–53. doi: 10.1016/j.ijpharm.2010.04.039. CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230–9. doi: 10.3109/03639045.2011.645830. CrossRefPubMedGoogle Scholar
  13. 13.
    Kulhari H, Pooja D, Prajapati SK, Chauhan AS. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm. 2011;405(1–2):203–9. doi: 10.1016/j.ijpharm.2010.12.002. CrossRefPubMedGoogle Scholar
  14. 14.
    Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, et al. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech. 2009;10(3):960–6. doi: 10.1208/s12249-009-9292-4. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tulbah AS, Ong HX, Colombo P, Young PM, Traini D. Novel simvastatin inhalation formulation and characterisation. AAPS PharmSciTech. 2014;15(4):956–62. doi: 10.1208/s12249-014-0127-6. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Singh C, Bhatt TD, Gill MS, Suresh S. Novel rifampicin-phospholipid complex for tubercular therapy: synthesis, physicochemical characterization and in-vivo evaluation. Int J Pharm. 2014;460(1–2):220–7. doi: 10.1016/j.ijpharm.2013.10.043. CrossRefPubMedGoogle Scholar
  17. 17.
    Singh D, Rawat MSM, Semalty A, Semalty M. Emodin–phospholipid complex. J Therm Anal Calorim. 2012;108(1):289–98. doi: 10.1007/s10973-011-1759-3. CrossRefGoogle Scholar
  18. 18.
    Singh D, Rawat MSM, Semalty A, Semalty M. Chrysophanol–phospholipid complex. J Therm Anal Calorim. 2013;111(3):2069–77. doi: 10.1007/s10973-012-2448-6. CrossRefGoogle Scholar
  19. 19.
    Barry J, Fritz M, Brender JR, Smith PES, Lee D-K, Ramamoorthy A. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc. 2009;131(12):4490–8. doi: 10.1021/ja809217u. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y, et al. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10(1):90–101. doi: 10.1021/mp300489p. CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou C, Xia X, Liu Y, Li L. The preparation of a complex of insulin-phospholipids and their interaction mechanism. J Pept Sci. 2012;18(9):541–8. doi: 10.1002/psc.2423. CrossRefPubMedGoogle Scholar
  22. 22.
    Saoji SD, Raut NA, Dhore PW, Borkar CD, Popielarczyk M, Dave VS. Preparation and evaluation of phospholipid-based complex of standardized centella extract (SCE) for the enhanced delivery of phytoconstituents. AAPS J. 2015. doi: 10.1208/s12248-015-9837-2. PubMedGoogle Scholar
  23. 23.
    Yue P-F, Yuan H-L, Li X-Y, Yang M, Zhu W-F. Process optimization, characterization and evaluation in vivo of oxymatrine–phospholipid complex. Int J Pharm. 2010;387(1–2):139–46. doi: 10.1016/j.ijpharm.2009.12.008. CrossRefPubMedGoogle Scholar
  24. 24.
    Yue P-F, Zhang W-J, Yuan H-L, Yang M, Zhu W-F, Cai P-L, et al. Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid–phospholipid complex. AAPS PharmSciTech. 2008;9(1):322–9. doi: 10.1208/s12249-008-9040-1. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pasha MK, Muzeeb S, Basha SJ, Shashikumar D, Mullangi R, Srinivas NR. Analysis of five HMG-CoA reductase inhibitors—atorvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin: pharmacological, pharmacokinetic and analytical overview and development of a new method for use in pharmaceutical formulations analysis and in vitro metabolism studies. Biomed Chromatogr. 2006;20(3):282–93. doi: 10.1002/bmc.561. CrossRefPubMedGoogle Scholar
  26. 26.
    Khan J, Alexander A, Ajazuddin, Saraf S, Saraf S. Luteolin-phospholipid complex: preparation, characterization and biological evaluation. J Pharm Pharmacol. 2014;66(10):1451–62. doi: 10.1111/jphp.12280. CrossRefPubMedGoogle Scholar
  27. 27.
    Bhattacharyya S, Ahammed SM, Saha BP, Mukherjee PK. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability. AAPS PharmSciTech. 2013;14(3):1025–33. doi: 10.1208/s12249-013-9991-8. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tan Q, Liu S, Chen X, Wu M, Wang H, Yin H, et al. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech. 2012;13(2):534–47. doi: 10.1208/s12249-012-9772-9. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chalikwar SS, Mene BS, Pardeshi CV, Belgamwar VS, Surana SJ. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polym-Plast Technol Eng. 2013;52(4):368–80. doi: 10.1080/03602559.2012.751999. CrossRefGoogle Scholar
  30. 30.
    Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261(2):402–10. doi: 10.1016/S0021-9797(03)00142-5.CrossRefPubMedGoogle Scholar
  31. 31.
    Saoji SD, Atram SC, Dhore PW, Deole PS, Raut NA, Dave VS. Influence of the component excipients on the quality and functionality of a transdermal film formulation. AAPS PharmSciTech. 2015;16(6):1344–56. doi: 10.1208/s12249-015-0322-0. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17(4–5):811–22. doi: 10.1016/S0731-7085(98)00011-9.CrossRefPubMedGoogle Scholar
  33. 33.
    Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65(1):13–7. doi: 10.1016/j.vascn.2011.11.001.CrossRefPubMedGoogle Scholar
  34. 34.
    Bouma M, Nuijen B, Sava G, Perbellini A, Flaibani A, van Steenbergen MJ, et al. Pharmaceutical development of a parenteral lyophilized formulation of the antimetastatic ruthenium complex NAMI-A. Int J Pharm. 2002;248(1–2):247–59.CrossRefPubMedGoogle Scholar
  35. 35.
    Sudhakar B, Krishna M, Murthy K. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies. Appl Nanosci. 2015;1–18. doi: 10.1007/s13204-015-0408-8.
  36. 36.
    Qin X, Yang Y, Fan TT, Gong T, Zhang XN, Huang Y. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex. Acta Pharmacol Sin. 2010;31(1):127–36. doi: 10.1038/aps.2009.171. CrossRefPubMedGoogle Scholar
  37. 37.
    LeFevre ME, Olivo R, Vanderhoff JW, Joel DD. Accumulation of latex in Peyer’s patches and its subsequent appearance in villi and mesenteric lymph nodes. Proc Soc Exp Biol Med. 1978;159(2):298–302.CrossRefPubMedGoogle Scholar
  38. 38.
    Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300(5619):615–8. doi: 10.1126/science.1078192. CrossRefPubMedGoogle Scholar
  39. 39.
    Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473(1–2):1–9. doi: 10.1016/j.ijpharm.2014.06.056.CrossRefPubMedGoogle Scholar
  40. 40.
    Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63. doi: 10.1016/j.ijpharm.2006.09.025. CrossRefPubMedGoogle Scholar
  41. 41.
    Semalty A, Semalty M, Singh D, Rawat MSM. Phyto-phospholipid complex of catechin in value added herbal drug delivery. J Incl Phenom Macrocycl Chem. 2012;73(1–4):377–86. doi: 10.1007/s10847-011-0074-8. CrossRefGoogle Scholar
  42. 42.
    Damle M, Mallya R. Development and evaluation of a novel delivery system containing phytophospholipid complex for skin aging. AAPS PharmSciTech. 2015. doi: 10.1208/s12249-015-0386-x. PubMedGoogle Scholar
  43. 43.
    Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67(3–4):253–60. doi: 10.1007/s10847-009-9705-8. CrossRefGoogle Scholar
  44. 44.
    Xia HJ, Zhang ZH, Jin X, Hu Q, Chen XY, Jia XB. A novel drug-phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013;8:545–54. doi: 10.2147/ijn.s39526. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Freag MS, Elnaggar YS, Abdallah OY. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomedicine. 2013;8:2385–97. doi: 10.2147/ijn.s45231. PubMedPubMedCentralGoogle Scholar
  46. 46.
    GL N. The fluid—mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta Biomembr. 2014;1838(6):1451–66. doi: 10.1016/j.bbamem.2013.10.019.CrossRefGoogle Scholar
  47. 47.
    Loguercio C, Andreone P, Brisc C, Brisc MC, Bugianesi E, Chiaramonte M, et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med. 2012;52(9):1658–65. doi: 10.1016/j.freeradbiomed.2012.02.008.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Suprit D. Saoji
    • 1
  • Veena S. Belgamwar
    • 1
  • Sanket S. Dharashivkar
    • 2
  • Aniket A. Rode
    • 1
  • Connor Mack
    • 3
  • Vivek S. Dave
    • 3
    Email author
  1. 1.Department of Pharmaceutical SciencesR.T.M. Nagpur UniversityNagpurIndia
  2. 2.Dr. L. H. Hiranandani College of PharmacyUlhasnagarIndia
  3. 3.Department of Pharmaceutical Sciences, Wegmans School of PharmacySt. John Fisher CollegeRochesterUSA

Personalised recommendations