Advertisement

Journal of Pharmaceutical Innovation

, Volume 5, Issue 4, pp 139–146 | Cite as

Purdue Ontology for Pharmaceutical Engineering: Part II. Applications

  • Leaelaf Hailemariam
  • Venkat VenkatasubramanianEmail author
Research Article

Abstract

The multiple steps in pharmaceutical product development generate a large amount of diverse information in various formats, which hinders efficient decision-making. A major component of the solution is a common information model for the domain. Ontologies were found to meet this need as described in Part I of this two-part paper. In Part II, we describe two applications of Purdue Ontology for Pharmaceutical Engineering. The first application deals with the prediction of degradation reactions through incorporation of molecular structure and environmental information captured in the ontologies. The second application is one that analyzes experiments to identify differences in experimental implementation.

Keywords

Ontology Informatics Reaction prediction Experiment analysis 

Notes

Acknowledgements

The work was done through the financial support of the Engineering Research Center for Structured Organic Particulate Systems, the Indiana 21st Century Fund, and Eli Lilly and Company. The authors thanks Balachandra Krishnamurthy, Gintaras Reklaitis, Kenneth Morris, Chunhua Zhao, Girish Joglekar, Shuo-Huan Hsu, Pradeep Suresh, Pavan Akkisetty, Prabir Basu, Henry Havel, Brian Good, Gus Hartauer, Steven Baertschi, Ahmad Almaya, Aktham Aburub, and David Long for their support.

References

  1. 1.
    Gruber TR. A translation approach to portable ontology specification. Kno Acq. 1993;5(2):199–220.CrossRefGoogle Scholar
  2. 2.
    Venkatasubramanian V, Zhao C, Joglekar G, Jain A, Hailemariam L, Suresh P, et al. Ontological Informatics Infrastructure for chemical product design and process development. Comp & Chem Engg. 2006;30(10–12):1482–96.CrossRefGoogle Scholar
  3. 3.
    Zhao C, Jain A, Hailemariam L, Suresh P, Akkisetty P, Joglekar G, et al. Towards intelligent decision support for pharmaceutical product development. J Ph Inn. 2006;1(1):23–35.CrossRefGoogle Scholar
  4. 4.
    Hailemariam L, Venkatasubramanian V. Purdue ontology for pharmaceutical engineering: part I. Conceptual framework. J Ph Inn. 2010. doi: 10.1007/s12247-010-9081-3.Google Scholar
  5. 5.
    Cache: http://www.cache.fujitsu.com/. Accessed Feb 2008.
  6. 6.
  7. 7.
    Socorro IM, Taylor K, Goodman JM. ROBIA: a reaction prediction program. Org Lett. 2005;7(16):3541–4.CrossRefPubMedGoogle Scholar
  8. 8.
    LHASA: http://www.lhasalimited.org. Accessed Feb 2008.
  9. 9.
    SWRL: http://www.w3.org/Submission/SWRL/. Accessed Feb 2008.
  10. 10.
    Ahuja S, Alsante KM. Handbook of isolation and characterization of impurities in pharmaceuticals. New York: Elsevier; 2003.Google Scholar
  11. 11.
    Baertschi S. Pharmaceutical stress testing: predicting drug degradation. In: Drugs and the Pharmaceutical Sciences. Vol. 153. Boca Raton FL: Taylor and Francis Group; 2005.Google Scholar
  12. 12.
    Zartler ER, Shapiro MJ. Fragonomics: fragment-based drug discovery. Curr Op Chem Bio. 2005;9:366–70.CrossRefGoogle Scholar
  13. 13.
    Chemistry Thesaurus: http://www.chemthes.com/. Accessed Feb 2008.
  14. 14.
  15. 15.
  16. 16.
    Protégé Datamaster: http://protege.cim3.net/cgi-bin/wiki.pl?DataMaster. Accessed Feb 2008.
  17. 17.
    Maldonado AG, Doucet JP, Petitjean M, Fan BT. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Div. 2006;10:39–79.CrossRefGoogle Scholar
  18. 18.
    FDA guidelines: http://www.fda.gov/cvm/Guidance/fguide91.PDF. Accessed Feb 2008.
  19. 19.
    Lavine B, Workman JJ. Chemometrics. Anal Chem. 2004;76:3365–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Nijhuis M.B, Van den Heuvel ER. Closed-form confidence intervals on measures of precision for an inter-laboratory study. J Biopharm Stat. 2007;17:123–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Hughes G, Mills H, de Roure D, Frey J, Moreau L, Schraefel MC, et al. The semantic smart laboratory: a system for supporting the chemical eScientist. Org Biomol Chem. 2004;2:1–10.CrossRefGoogle Scholar
  22. 22.
    Morris K, Venugopal S, Eckstut M. Making the most of drug development data. Pharm Manuf. 2005;11:399–402.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leaelaf Hailemariam
    • 1
  • Venkat Venkatasubramanian
    • 2
    Email author
  1. 1.The Dow Chemical CompanyMidlandUSA
  2. 2.Laboratory for Intelligent Process Systems, School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations