Journal of Pharmaceutical Innovation

, Volume 4, Issue 4, pp 174–186

Predictive Modeling for Pharmaceutical Processes Using Kriging and Response Surface

  • Zhenya Jia
  • Eddie Davis
  • Fernando J. Muzzio
  • Marianthi G. Ierapetritou
Process Design, Optimization, Automation, and Control

Abstract

Powder feeding is a fundamental unit operation in the pharmaceutical industry. For the cases in which first-principle process models are unknown, such as when new powder mixture feeding operations are being evaluated, or no longer accurately describe current operating behavior, surrogate model-based approaches can be employed in order to quantify input–output behavior. In this work, two such metamodeling techniques—kriging and response surface methods—are used to predict a loss-in-weight feeder unit’s flow variability in terms of unit flowability and feed rate. Based on a comparison of predicted with experimental values, an iteratively constructed kriging model is found to more accurately capture the feeder system behavior compared with the response surface methodology. Although feeders are used as a case study in this paper, the kriging methodology is general to address other processes where first-principle models are not available.

Keywords

Feeders Modeling Kriging Response surface Optimization Powder feeding 

References

  1. 1.
    Francis TM, Gump CJ, Weimer AW. Spinning wheel powder feeding device—fundamentals and applications. Powder Technol. 2006;170:36–44.CrossRefGoogle Scholar
  2. 2.
    Gundogdu MY. Design improvements on rotary valve particle feeders used for obtaining suspended airflows. Powder Technol. 2004;139:76–80.CrossRefGoogle Scholar
  3. 3.
    Kehlenbeck V, Sommer K. Possibilities to improve the short term dosing constancy of volumetric feeders. Powder Technol. 2003;138:51–6.CrossRefGoogle Scholar
  4. 4.
    Reist PC, Taylor L. Development and operation of an improved turntable dust feeder. Powder Technol. 2000;107:36–42.CrossRefGoogle Scholar
  5. 5.
    McKenzie P, Kiang S, Tom J, Rubin AE, Futran M. Can pharmaceutical process development become high tech? AICHE J. 2006;52:3990–4.CrossRefGoogle Scholar
  6. 6.
    Jaeger HM, Nagel S. Physics of the granular state. Science. 1992;256:1523.CrossRefGoogle Scholar
  7. 7.
    Pan H, Landers RG, Liou F. Dynamic modeling of powder delivery systems in gravity-fed powder feeders. J Manuf Sci Eng. 2006;128:337–45.CrossRefGoogle Scholar
  8. 8.
    Reed AR, Bradley MS, Pittman AN. The characteristics of rotary feeders used for flow control of particulate materials. Proc Inst Mech Eng, E. 2000;214:43–52.CrossRefGoogle Scholar
  9. 9.
    Yu Y, Arnold PC. The influence of screw feeders on bin flow patterns. Powder Technol. 1996;88:81–7.CrossRefGoogle Scholar
  10. 10.
    Box G, Hunter S, Hunter WG. Statistics for experimenters. Design, innovation, and discovery. 2nd ed. New York: Wiley-Interscience; 2005.Google Scholar
  11. 11.
    Santner T, Williams B, Notz W. The design and analysis of computer experiments. New York: Springer; 2003.Google Scholar
  12. 12.
    Cressie N. Statistics for spatial data. New York: Wiley; 1993.Google Scholar
  13. 13.
    Sacks J, Schilller SB, Welch WJ. Designs for computer experiments. Technometrics. 1989;31:41–7.CrossRefGoogle Scholar
  14. 14.
    Davis E, Ierapetritou MG. A Kriging method for the solution of nonlinear programs with black-box functions. AICHE J. 2007;53:2001–12.CrossRefGoogle Scholar
  15. 15.
    Davis E, Ierapetritou M. A Kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions. J Glob Opt. 2008;43:191–205.CrossRefGoogle Scholar
  16. 16.
    Davis E, Ierapetritou M. A kriging-based approach to MINLP containing black-box models and noise. Ind Eng Chem Res. 2008;47:6101–25.CrossRefGoogle Scholar
  17. 17.
    Davis E, Ierapetritou M. A centroid-based sampling strategy for kriging global modeling and optimization. AIChE J. 2009. doi:10.1002/aic.11881.
  18. 18.
    Krige D. a statistical approach to some mine valuations and allied problems at the Witwatersrand. Master’s thesis. University of Witwatersrand, Johannesburg; 1951.Google Scholar
  19. 19.
    Goovaaerts P. Geostatisics for natural resources evolution. New York: Oxford University Press; 1997.Google Scholar
  20. 20.
    Matheron G. Principles of geostatistics. Econ Geol. 1963;58:1246–66.CrossRefGoogle Scholar
  21. 21.
    Isaaks E, Srivistava R. Applied geostatistics. New York: Oxford University Press; 1989.Google Scholar
  22. 22.
    Box G, Wilson K. On the experimental attainment of optimum conditions. J R Stat Soc Ser B. 1951;13:1–45.Google Scholar
  23. 23.
    Myers R, Montgomery D. Response surface methodology. New York: Wiley; 2002.Google Scholar
  24. 24.
    Jones D. A taxonomy of global optimization methods based on response surfaces. J Global Optim. 2001;21:345–83.CrossRefGoogle Scholar
  25. 25.
    Jones D, Schonlau M, Welch W. Efficient global optimization of expensive black-box functions. J Global Optim. 1998;13:455–92.CrossRefGoogle Scholar
  26. 26.
    Regis R, Shoemaker C. Constrained global optimization of expensive black box functions using radial basis functions. J Glob Opt. 2005;31:153.CrossRefGoogle Scholar
  27. 27.
    Alexander AW, Chaudhuri B, Faqih A, Muzzio FJ, Davies C, Tomassone MS. Avalanching flow of cohesive powders. Powder Technol. 2006;164(1):13–21.CrossRefGoogle Scholar
  28. 28.
    Chaudhuri B, Mehrotra A, Muzzio FJ, Tomassone MS. Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 2006;165(2):105–14.CrossRefGoogle Scholar
  29. 29.
    Faqih A, Chaudhuri B, Alexander AWA, Hammond S, Muzzio FJ, Tomassone MS. Flow- induced dilation of cohesive granular materials. AICHE J. 2006;52:4124–32.CrossRefGoogle Scholar
  30. 30.
    Portillo PM, Muzzio FJ, Ierapetritou MG. Hybrid DEM-compartment modeling approach for granular mixing. AIChE J. 2007;53:119–28.CrossRefGoogle Scholar
  31. 31.
    Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence; 1995. p. 1137–43.Google Scholar

Copyright information

© International Society for Pharmaceutical Engineering 2009

Authors and Affiliations

  • Zhenya Jia
    • 1
  • Eddie Davis
    • 1
  • Fernando J. Muzzio
    • 1
  • Marianthi G. Ierapetritou
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringRutgers–The State University of New JerseyPiscatawayUSA

Personalised recommendations