Optical wireless multiple-input multiple-output system based on avalanche photodiode receiver

  • Hao DuEmail author
  • Guoning Xu


With the rising demand for high data-transmission rates, optical wireless communication (OWC) is considered one of the particularly appropriate solutions. In this paper, an avalanche photodiode (APD)-based optical wireless configuration is used to approximate the receiver output. This paper also presents bit error rate (BER) evaluation statistics compared with the theoretical results for optical wireless multiple-input multiple-output (MIMO) communication systems. In particular, the simulated results show that the BER of a 4 × 4 MIMO system is significantly lower than that of other APD systems (over 10 times better when the mean energy is higher than − 165 dBJ). To summarize, the OWC-MIMO system shows enormous potential in the high-speed data-transmission field.


APD receiver Optical wireless communication MIMO system 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 61901450).


  1. 1.
    Chan VWS (2006) Free-space optical communications [J]. IEEE J Lightwave Technol 24(12):4750–4762CrossRefGoogle Scholar
  2. 2.
    Koonen AMJ, Tangdiongga E (2014) Photonic home area networks [J]. J Lightwave Technol 32(4):591–604CrossRefGoogle Scholar
  3. 3.
    Ge X, Tu S, Mao G, Wang CX, Han T (2016) 5G ultra-dense cellular networks [J]. IEEE Wirel Commun 23(1):72–79CrossRefGoogle Scholar
  4. 4.
    Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey [J]. IEEE Commun Surv Tutor 18(3):1617–1655CrossRefGoogle Scholar
  5. 5.
    Grubor J, Randel S, Dieter Langer K, Walewski JW (2008) Broadband information broadcasting using LED-based interior lighting [J]. IEEE J Lightwave Technol 26(24):3883–3892CrossRefGoogle Scholar
  6. 6.
    Koonen T (2018) Indoor optical wireless systems - technology, trends, and applications [J]. J Lightwave Technol 36(8):1459–1467CrossRefGoogle Scholar
  7. 7.
    Khalighi MA, Uysal M (2014) Survey on free space optical communication: a communication theory perspective [J]. IEEE Commun Surv Tutor 16(4):2231–2258CrossRefGoogle Scholar
  8. 8.
    Fath T, Haas H (2013) Performance Comparison of mimo techniques for optical wireless communications in indoor environments [J]. IEEE Trans Commun 61(2):733–742CrossRefGoogle Scholar
  9. 9.
    Lange S et al (2016) Low switching voltage Mach–Zehnder modulator monolithically integrated with DFB laser for data transmission up to 107.4 Gb/s [J]. J Lightwave Technol 34(2):401–406CrossRefGoogle Scholar
  10. 10.
    Webb PP, McIntyre RJ, Conradi J (1974) Properties of avalanche photodiodes. RCA Rev 35:234–278Google Scholar
  11. 11.
    Le Minh H, Ghassemlooy Z, O’Brien D, Faulkner G (2010) Indoor gigabit optical wireless communications - challenges and possibilities [C]. Proc. 12th IEEE Conference on Transparent Optical Networks (ICTON)Google Scholar
  12. 12.
    Le-Minh H, O’Brien D, Faulkner G, Zeng L, Lee K, Jung D, Oh Y (2008) High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon Technol Lett 20(14):1243–1245CrossRefGoogle Scholar
  13. 13.
    Grubor J, Langer K-D, Lee SCJ, Koonen T, Walewski JW (2007) Wireless high-speed data transmission with phosphorescent white-light LEDs [C]. Proc. 23rd European Conference and Exhibition of Optical Communication (ECOC)Google Scholar
  14. 14.
    Yeh CH, Liu YL, Chow CW (2013) Real-time white-light phosphor-LED visible light communication (VLC) with compact size [J]. Opt Express 21(22):26192–26197CrossRefGoogle Scholar
  15. 15.
    Sung J-Y, Chow C-W, Yeh C-H (2014) Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications? [J]. Opt Express 22(17):20646–20651CrossRefGoogle Scholar
  16. 16.
    Haas H, Yin L, Wang Y, Chen C (2015) What is LiFi? [J]. J Lightwave Technol 34(6):1533–1544CrossRefGoogle Scholar
  17. 17.
    Cossu G, Corsini R, Khalid AM, Ciaramella E (2014) Bi-directional 400 Mbps LED-based optical wireless communication for non-directed line-of-sight transmission combined deterministic and modified Monte Carlo method for calculating impulse responses of indoor optical wireless channels [J]. J Lightwave Technol 32(18)Google Scholar
  18. 18.
    Gomez A, Shi K, Quintana C, Maher R, Faulkner G, Bayvel P, Thomsen BC, O’Brien D (2016) Design and demonstration of a 400 Gbps indoor optical wireless communications link transmission system [J]. J Lightwave Technol 34(22):5332–5339CrossRefGoogle Scholar
  19. 19.
    Sugiura S, Iizuka H (2016) Element-by-element full-rank optical wireless MIMO systems using narrow-window angular filter designed based on one-dimensional photonic crystal [J]. J Lightwave Technol 34(24):5601–5609CrossRefGoogle Scholar
  20. 20.
    Ferhi LA et al (2019) Multi-carrier, multi-band, and multi-layer cellular layouts using 3D beamforming for 5G ultradense networks [J]. Ann Telecommun 1–17Google Scholar
  21. 21.
    Dahiya S, Kumar A, Singh AK (2018) Average power allocation based sum-rate optimization in massive MIMO systems [J]. Ann Telecommun 73(11-12):689–701CrossRefGoogle Scholar
  22. 22.
    Koç A, Altunbaş I, Yongaçoğlu A (2017) Relay selection in two-way full-duplex relay networks over Nakagami-m fading channels [J]. Ann Telecommun 72(11-12):731–742CrossRefGoogle Scholar
  23. 23.
    Salam AAO et al (2019) Spectrum sensing in cognitive radio using multitaper method based on MIMO-OFDM techniques [J]. Ann Telecommun 1–10Google Scholar
  24. 24.
    Chen C, Yang H (2017) Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence [J]. Opt Express 25(11):12779–12795CrossRefGoogle Scholar
  25. 25.
    Chen C, Yang H (2018) Shared secret key generation from signal fading in a turbulent optical wireless channel using common-transverse-spatial-mode coupling [J]. Opt Express 26(13):16422–16441CrossRefGoogle Scholar
  26. 26.
    Zou D, Gong C, Xu Z (2018) Secrecy rate of MISO optical wireless scattering communications [J]. IEEE Trans Commun 66(1):225–238CrossRefGoogle Scholar
  27. 27.
    Wilson SG, Brandt-Pearce M, Cao Q, Leveque J (2005) Free-space optical MIMO transmission with Q-ary PPM [J]. IEEE Trans Commun 53(8):1402–1412CrossRefGoogle Scholar
  28. 28.
    Hranilovic S (2005) Wireless Optical Communication Systems [M]. Springer PressGoogle Scholar
  29. 29.
    McIntyre RJ (1972) The distribution of gains in uniformly multiplying avalanche photodiodes: theory [J]. IEEE Trans Electron Devices 19(6):703–713CrossRefGoogle Scholar
  30. 30.
    Conradi JJ (1972) The distribution of gains in uniformly multiplying avalanche photodiodes: experimental [J]. IEEE Trans Electron Devices 19(6):714–718CrossRefGoogle Scholar
  31. 31.
    Baker KR (1996) On the WMC density as an inverse Gaussian probability density [J]. IEEE Trans Commun 44(1):15–17CrossRefGoogle Scholar
  32. 32.
    Tang JTK, Letaief KB (1998) The use of WMC distribution for performance evaluation of APD optical communication systems [J]. IEEE Trans Commun 46(2):279–285CrossRefGoogle Scholar
  33. 33.
    Letaief KB, Sadowsky JS (1992) Computing bit-error probabilities for avalanche photodiode receivers by large deviations theory [J]. IEEE Trans Inf Theory 38(3):1162–1168CrossRefGoogle Scholar
  34. 34.
    Da Rocha JRF, O’Reilly JJ (1982) Modified Chernoff bound for binary optical communication [J]. Electron Lett 18(16):708–710CrossRefGoogle Scholar
  35. 35.
    Barry JR (1994) Wireless infrared communications. KluwerGoogle Scholar
  36. 36.
    Davidson FM, Sun X (1988) Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signalling and APD receivers [J]. IEEE Trans Commun 36(11):1185–1191CrossRefGoogle Scholar
  37. 37.
    Cvijetic N, Wilson SG, Brandt-Pearce M (2008) Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence [J]. IEEE J Sel Areas Commun 26(3):3–12CrossRefGoogle Scholar
  38. 38.
    Glover IA, Grant PM (2004) Digital communications [M]. Prentice-Hall PressGoogle Scholar
  39. 39.
    Einarsson G (1996) Principles of lightwave communications [M]. Wiley PressGoogle Scholar
  40. 40.
    Nistazakis HE, Assimakopoulos VD, Tombras GS (2011) Performance estimation of free space optical links over negative exponential atmospheric turbulence channels [J]. Optik 122(24):2191–2194CrossRefGoogle Scholar
  41. 41.
    He J, Norwood RA, Brandt-Pearce M, Djordjevic IB, Cvijetic M, Subramaniam S, Himmelhuber R, Reynolds C, Blanche P, Lynn B, Peyghambarian N (2014) A survey on recent advances in optical communications [J]. Comput Electr Eng 40(1):216–240CrossRefGoogle Scholar
  42. 42.
    Lee EJ, Chan VWS (2004) Part 1: optical communication over the clear turbulent atmospheric channel using diversity [J]. IEEE J Sel Areas Commun 22(9):1896–1906CrossRefGoogle Scholar
  43. 43.
    Navidpour SM, Uysal M, Kavehrad M (2007) BER performance of free-space optical transmission with spatial diversity [J]. IEEE Trans Wirel Commun 6(8):2813–2819CrossRefGoogle Scholar
  44. 44.
    Safari M, Uysal M (2008) Do we really need OSTBCs for free-space optical communication with direct detection? [J]. IEEE Trans Wirel Commun 7(11):4445–4448CrossRefGoogle Scholar
  45. 45.
    Simon MK, Vilnrotter VA (2005) Alamouti-type space-time coding for free-space optical communication with direct detection [J]. IEEE Trans Wirel Commun 4(1):35–39CrossRefGoogle Scholar
  46. 46.
    Delves LM, Mohamed JL (1985) Computational methods for integral equations [M]. Cambridge University PressGoogle Scholar
  47. 47.
    Brandimarte P (2006) Numerical methods in finance and economics: a MATLAB-based introduction, Hoboken [M]. Wiley Interscience PressGoogle Scholar
  48. 48.
    MacKay DJC (2003) Information theory, inference, and learning algorithms [M]. Cambridge University PressGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations