Advertisement

Annals of Telecommunications

, Volume 74, Issue 1–2, pp 67–77 | Cite as

The effect of antenna polarization and body morphology on the measurement uncertainty of a wearable multi-band distributed exposure meter

  • Reza AminzadehEmail author
  • Arno Thielens
  • Sam Agneessens
  • Patrick Van Torre
  • Matthias Van den Bossche
  • Stefan Dongus
  • Marloes Eeftens
  • Anke Huss
  • Roel Vermeulen
  • René de Seze
  • Paul Mazet
  • Elisabeth Cardis
  • Hendrik Rogier
  • Martin Röösli
  • Luc Martens
  • Wout Joseph
Article
  • 63 Downloads

Abstract

This paper studies the effect of antenna polarization on measurement uncertainty of a multi-band body-worn distributed exposure meter (BWDM). The BWDM is a device for assessing electromagnetic fields in real environments accurately. The BWDM consists of 8 nodes and is calibrated on the body for simultaneous measurement of the incident power density in four frequency bands. Each node contains an antenna that can have two potential antenna polarizations.The BWDM is calibrated on four human subjects in an anechoic chamber to determine its measurement uncertainty in terms of 68% confidence interval (CI68) of the on-body antenna aperture. The results show that using a fixed polarization of the antennas on body can lead to a different CI68 up to maximum 4.9 dB when worn by another person which is still 9.6 dB lower than the measurement uncertainty of commercial exposure meters.

Keywords

RF exposure Personal exposure meters Polarization dependency Body morphology Measurement uncertainty 

Notes

Funding information

This research was funded by the Research Foundation Flanders (FWO) under grant agreement no. G003415N and the French National Research Program for Environmental and Occupational Health of ANSES (2015/2 RF/07) as part of project ACCEDERA. A.T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 665501 with the FWO. A.T. is an FWO [PEGASUS]2 Marie Skłodowska-Curie Fellow. S.A. is a Post-Doctoral Fellow of the FWO.

References

  1. 1.
    World Health Organization (WHO). Radio frequency (RF) fields research agenda. http://www.who.int/peh-emf/research/agenda/en/ accessed on 15 February 2018
  2. 2.
    Eeftens M, Struchen B, Birks LE, Cardis E, Estarlich M, Fernandez MF, Gajšek P., Gallastegi M, Huss A, Kheifets L, Meder IK, Olsen J, Torrent M, Trček T., Valič B., Vermeulen R, Vrijheid M, van Wel L, Guxens M, Röösli M. (2018) Personal exposure to radio-frequency electromagnetic fields in europe: is there a generation gap? Environ Int 121:216.  https://doi.org/10.1016/j.envint.2018.09.002 CrossRefGoogle Scholar
  3. 3.
    Gryz K, Zradziński P, Karpowicz J (2015) The role of the location of personal exposimeters on the human body in their use for assessing exposure to the electromagnetic field in the radiofrequency range 98–2450 MHz and compliance analysis: evaluation by virtual measurements, BioMed research international 2015 Google Scholar
  4. 4.
    Bolte JF, van der Zande G, Kamer J (2011) Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 32(8):652CrossRefGoogle Scholar
  5. 5.
    Thuróczy G, Molnár F, Jánossy G, Nagy N, Kubinyi G, Bakos J, Szabó J (2008) Personal RF exposimetry in urban area. Annals of Telecommunications-annales des télécommunications 63(1-2):87CrossRefGoogle Scholar
  6. 6.
    Thielens A, Agneessens S, Verloock L, Tanghe E, Rogier H, Martens L, Joseph W (2015) On-body calibration and processing for a combination of two radio-frequency personal exposimeters. Radiat Prot Dosim 163 (1):58CrossRefGoogle Scholar
  7. 7.
    Bolte JF (2016) Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters. Environ Int 94(Supplement C):724.  https://doi.org/10.1016/j.envint.2016.06.023 CrossRefGoogle Scholar
  8. 8.
    Bahillo A, Blas J, Fernández P., Lorenzo RM, Mazuelas S, Abril EJ (2008) E-field assessment errors associated with RF dosemeters for different angles of arrival. Radiat Prot Dosim 132(1):51CrossRefGoogle Scholar
  9. 9.
    Neubauer G, Cecil S, Giczi W, Petric B, Preiner P, Fröhlich J, Röösli M (2010) The association between exposure determined by radiofrequency personal exposimeters and human exposure: a simulation study. Bioelectromagnetics 31(7):535CrossRefGoogle Scholar
  10. 10.
    de Miguel-Bilbao S, Ramos V, Blas J (2017) Assessment of polarization dependence of body shadow effect on dosimetry measurements in 2.4 GHz band. Bioelectromagnetics 38(4):315.  https://doi.org/10.1002/bem.22030 CrossRefGoogle Scholar
  11. 11.
    López AN, Gonzalez-Rubio J, Montoya JMV, Garde EA (2015) Using multiple exposimeters to evaluate the influence of the body when measuring personal exposition to radio frequency electromagnetic fields, COMPEL. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34(4):1063.  https://doi.org/10.1108/COMPEL-10-2014-0268 CrossRefGoogle Scholar
  12. 12.
    Aminzadeh R, Thielens A, Bamba A, Kone L, Gaillot DP, Lienard M, Martens L, Joseph W (2016) On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments. Bioelectromagnetics 37(5):298CrossRefGoogle Scholar
  13. 13.
    Vanveerdeghem P, Van Torre P, Thielens A, Knockaert J, Joseph W, Rogier H (2015) Compact personal distributed wearable exposimeter. IEEE Sensors J 15(8):4393CrossRefGoogle Scholar
  14. 14.
    Thielens A, Agneessens S, De Clercq H, Lecoutere J, Verloock L, Tanghe E, Aerts S, Puers R, Rogier H, Martens L, Joseph W (2015) On-body calibration and measurements using a personal, distributed exposimeter for wireless fidelity. Health Phys 108(4):407CrossRefGoogle Scholar
  15. 15.
    Aminzadeh R, Thielens A, Agneessens S, Van Torre P, Van den Bossche M, Dongus S, Eeftens M, Huss A, Vermeulen R, de Seze R, Mazet P, Cardis E, Rogier H, Röösli M., Martens L, Joseph W (2018) A multi-band body-worn distributed radio-frequency exposure meter: Design, on-body calibration and study of body morphology. Sensors 18(272):1–19.  https://doi.org/10.3390/s18010272 Google Scholar
  16. 16.
    Thielens A, Vanveerdeghem P, Van Torre P, Gängler S., Röösli M., Rogier H, Martens L, Joseph W (2016) A personal distributed exposimeter: procedure for design, calibration, validation, and application. Sensors 16(2):1–23CrossRefGoogle Scholar
  17. 17.
    Thielens A, Martens L, Joseph W (2017) Comments on assessment of polarization dependence of body shadow effect on dosimetry measurements in 2.4GHz band. Bioelectromagnetics 38(8):648.  https://doi.org/10.1002/bem.22080 CrossRefGoogle Scholar
  18. 18.
    Agneessens S (2017) Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high-body antenna isolation, IEEE AccessGoogle Scholar
  19. 19.
    International Commission on Non-ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 Hz). Health Phys 74(4):494Google Scholar
  20. 20.
    Hirata A, Ito N, Fujiwara O (2009) Influence of electromagnetic polarization on the whole-body averaged SAR in children for plane-wave exposures. Phys Med Biol 54(4):N59. http://stacks.iop.org/0031-9155/54/i=4/a=N02 CrossRefGoogle Scholar
  21. 21.
    Bamba A, Joseph W, Vermeeren G, Thielens A, Tanghe E, Martens L (2014) A formula for human average whole-body SAR wb under diffuse fields exposure in the GHz region. Phys Med Biol 59(23):7435. http://stacks.iop.org/0031-9155/59/i=23/a=7435 CrossRefGoogle Scholar
  22. 22.
    Kühn S, Jennings W, Christ A, Kuster N (2009) Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models. Phys Med Biol 54(4):875. http://stacks.iop.org/0031-9155/54/i=4/a=004 CrossRefGoogle Scholar
  23. 23.
    Aminzadeh R, Thielens A, Gaillot DP, Lienard M, Agneessens S, Torre PV, den Bossche MV, Rogier H, Röösli M, Martens L, Joseph W (2018). In: 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), pp 1–4.  https://doi.org/10.23919/URSI-AT-RASC.2018.8471583
  24. 24.
    Narda Safety Test Solutions. Electric and Magnetic Field Measurement, NBM Series Probes., EF0391: Economical field probe for universal frequency range. 100 kHz - 3 GHz (2016). NBM-Probes: DataSheetGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Reza Aminzadeh
    • 1
    Email author
  • Arno Thielens
    • 1
  • Sam Agneessens
    • 1
  • Patrick Van Torre
    • 1
  • Matthias Van den Bossche
    • 1
  • Stefan Dongus
    • 2
    • 3
  • Marloes Eeftens
    • 2
    • 3
  • Anke Huss
    • 4
  • Roel Vermeulen
    • 4
  • René de Seze
    • 5
  • Paul Mazet
    • 6
  • Elisabeth Cardis
    • 7
  • Hendrik Rogier
    • 1
  • Martin Röösli
    • 2
    • 3
  • Luc Martens
    • 1
  • Wout Joseph
    • 1
  1. 1.Department of Information TechnologyGhent University/imecGhentBelgium
  2. 2.Department of Epidemiology and Public HealthSwiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.University of BaselBaselSwitzerland
  4. 4.Institute for Risk Assessment Sciences (IRAS)Utrecht UniversityUtrechtThe Netherlands
  5. 5.National Institute for Industrial Environment and Risks (INERIS)Verneuil-en-HalatteFrance
  6. 6.Technical Center for Mechanical Industries (CETIM)SenlisFrance
  7. 7.Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain

Personalised recommendations