Advertisement

Additively homomorphic encryption and fragmentation scheme for data aggregation inside unattended wireless sensor networks

  • Katarzyna KapustaEmail author
  • Gerard Memmi
  • Hassan Noura
Article
  • 13 Downloads

Abstract

Data fragmentation and dispersion is recognized as a way of providing confidentiality and availability of data stored inside unattended wireless sensor networks. This paper introduces an additively homomorphic encryption and fragmentation scheme (AHEF). AHEF replaces additively homomorphic secret sharing used in state-of-the-art techniques with additively homomorphic fragmentation. This change has a significant impact on the volume of data stored inside the sensors which in turn supports lower transmission costs. Both, storage and transmission costs are reduced by a factor of at least 2. Moreover, by reducing the number of required computations, AHEF allows sensors to save energy.

Keywords

Unattended wireless sensor networks Internet-of-Things IoT UWSN Data fragmentation Data aggregation Data protection Additively homomorphic encryption Information dispersal 

Notes

Acknowledgments

The authors would like to thank the reviewers of this work as well as professor Roberto Di Pietro for his remarks and encouragements.

References

  1. 1.
    Di Pietro R, Mancini LV, Soriene C, Spognardi A, Tsudik G (2008). In: Sixth annual IEEE international conference on pervasive computing and communications (PerCom 2008), 17-21 March 2008, Hong Kong, pp 185–194.  https://doi.org/10.1109/PERCOM.2008.31
  2. 2.
    Di Pietro R, Mancini LV, Soriente C, Spognardi A, Tsudik G (2009). IEEE Trans Comput 58 (11):1500.  https://doi.org/10.1109/TC.2009.109 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ren Y , Oleshchuk V, Li FY (2009). In: 2009 2nd IFIP Wireless Days (WD), pp 1–6.  https://doi.org/10.1109/WD.2009.5449662
  4. 4.
    Kapusta K, Memmi G, Noura H (2017). In: 1st cyber security in networking conference, CSNet 2017, Rio de Janeiro, Brazil, October 18-20, 2017, pp 1–8.  https://doi.org/10.1109/CSNET.2017.8241998
  5. 5.
    Ren W, Ren Y, Zhang H (2008). In: 2008 IEEE/IFIP international conference on embedded and ubiquitous computing, vol 2, pp 318–323.  https://doi.org/10.1109/EUC.2008.76
  6. 6.
    Wang Q, Ren K, Lou W, Zhang Y (2009). In: IEEE INFOCOM 2009, pp 954–962.  https://doi.org/10.1109/INFCOM.2009.5062006
  7. 7.
    Ren Y, Oleshchuk V, Li FY (2009). In: 2009 3rd international conference on new technologies, mobility and security, pp 1–5.  https://doi.org/10.1109/NTMS.2009.5384753
  8. 8.
    Rabin MO (1989). J. ACM 36(2):335.  https://doi.org/10.1145/62044.62050 CrossRefGoogle Scholar
  9. 9.
    Memmi G, Kapusta K, Qiu H (2015). In: 2015 IEEE international conference on cyber security of smart cities, industrial control system and communications (SSIC) 2015, Shanghai, China, pp 1–9.  https://doi.org/10.1109/SSIC.2015.7245680
  10. 10.
    Aliberti G, Di Pietro R, Guarino S, Netw J (2017). Comput Appl 99 (C):146.  https://doi.org/10.1016/j.jnca.2017.09.008 CrossRefGoogle Scholar
  11. 11.
    Di Pietro R, Verde NV (2011). In: Proceedings of the Fourth ACM conference on wireless network security, ACM, New York, WiSec ’11, pp 11–22.  https://doi.org/10.1145/1998412.1998417
  12. 12.
    Shamir A (1979). Commun ACM 22(11):612.  https://doi.org/10.1145/359168.359176 CrossRefGoogle Scholar
  13. 13.
    Castelluccia C, Mykletun E, Tsudik G (2005). In: The Second annual international conference on mobile and ubiquitous systems: networking and services, pp 109–117.  https://doi.org/10.1109/MOBIQUITOUS.2005.25
  14. 14.
    Di Pietro R, Guarino S (2013). In: 2013 proceedings IEEE INFOCOM, pp 205–209.  https://doi.org/10.1109/INFCOM.2013.6566764
  15. 15.
    Bohli J, Papadimitratos P, Verardi D, Westhoff D (2011). In: 2011 IEEE 36th conference on local computer networks, pp 994–1002.  https://doi.org/10.1109/LCN.2011.6114411
  16. 16.
  17. 17.
    Barker EB, Kelsey JM (2011) Recommendation for random number generation using deterministic random bit generators (revised), US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Computer Security Division, Information Technology LaboratoryGoogle Scholar
  18. 18.
    Krawczyk H (1994). In: Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology, Springer, London, CRYPTO ’93, pp 136–146. http://dl.acm.org/citation.cfm?id=646758.705700
  19. 19.
    Choi HB , Ko YB, Lim KW (2018). In: Proceedings of the Third international conference on security of smart cities, industrial control system and communications, SSIC ’18Google Scholar
  20. 20.
    Hamid MA, Sarkar AMJ (2012). Annales des Télécommunications 67(9-10):455.  https://doi.org/10.1007/s12243-011-0278-3 CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LTCI, Telecom ParisTechParisFrance
  2. 2.Department of Electrical and Computer EngineeringAmerican University of BeirutBeirutLebanon

Personalised recommendations