Advertisement

Annals of Telecommunications

, Volume 73, Issue 7–8, pp 451–461 | Cite as

A Big Data architecture for spectrum monitoring in cognitive radio applications

  • Giuseppe Baruffa
  • Mauro FemminellaEmail author
  • Matteo Pergolesi
  • Gianluca Reali
Article

Abstract

Cognitive radio has emerged as a promising candidate solution to improve spectrum utilization in next-generation wireless networks. A crucial requirement for future cognitive radio networks is the wideband spectrum sensing, which allows detecting spectral opportunities across a wide frequency range. On the other hand, the Internet of Things concept has revolutionized the usage of sensors and of the relevant data. Connecting sensors to cloud computing infrastructure enables the so-called paradigm of Sensing as a Service (S2aaS). In this paper, we present an S2aaS architecture to offer the Spectrum Sensing as a Service (S3aaS), by exploiting the flexibility of software-defined radio. We believe that S3aaS is a crucial step to simplify the implementation of spectrum sensing in cognitive radio. We illustrate the system components for the S3aaS, highlighting the system design choices, especially for the management and processing of the large amount of data coming from the spectrum sensors. We analyze the connectivity requirements between the sensors and the processing platform, and evaluate the trade-offs between required bandwidth and target service delay. Finally, we show the implementation of a proof-of-concept prototype, used for assessing the effectiveness of the whole system in operation with respect to a legacy processing architecture.

Keywords

Spectrum sensing Big Data NoSQL MapReduce Performance evaluation 

Notes

Funding information

This work is financially supported by CLOUD and HYDRA, two research projects funded by the University of Perugia.

References

  1. 1.
    Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46(4):40–48CrossRefGoogle Scholar
  2. 2.
    Wang B, Liu KJR (2011) Advances in cognitive radio networks: a survey. IEEE J Sel Top Sign Proces 5 (1):5–23CrossRefGoogle Scholar
  3. 3.
    Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130CrossRefGoogle Scholar
  4. 4.
    Flores AB et al (2013) IEEE 802.11af: a standard for TV white space spectrum sharing. IEEE Commun Mag 51(10):92–100CrossRefGoogle Scholar
  5. 5.
    Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660CrossRefGoogle Scholar
  6. 6.
    Perera C, et al. (2014) Context aware computing for the Internet of Things: a survey. IEEE Commun Surv Tutor 16(1):414–454CrossRefGoogle Scholar
  7. 7.
    Miorandi D et al (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10 (7):1497–1516CrossRefGoogle Scholar
  8. 8.
    Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a service model for smart cities supported by Internet of Things. Trans Emerg Telecommun Technol 25(1):81–93CrossRefGoogle Scholar
  9. 9.
    De Mauro A, Greco M, Grimaldi M (2016) A formal definition of Big Data based on its essential features. Library ReviewGoogle Scholar
  10. 10.
    Zaslavsky A, Perera C, Georgakopoulos D (2013) Sensing as a service and big data. arXiv:1301.0159
  11. 11.
    Mell P, Grance T (2011) The NIST definition of cloud computingGoogle Scholar
  12. 12.
    Sheng X, Tang J, Xiao X, Xue G (2013) Sensing as a service: challenges, solutions and future directions. IEEE Sens J 13(10):3733–3741CrossRefGoogle Scholar
  13. 13.
    Zaslavsky A et al (2012) Sensing-as-a-Service and Big Data. In: Proceedings of the international conference on advances in cloud computing (ACC), BangaloreGoogle Scholar
  14. 14.
    Ghasemi A, Sousa ES (2008) Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Commun Mag 46(4):32–39CrossRefGoogle Scholar
  15. 15.
    Apache: Flink. https://flink.apache.org. Accessed: 11 Apr 2017
  16. 16.
    Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015) Apache Flink: stream and batch processing in a single engine. Bull IEEE Comput Soc Tech Comm Data Eng 38(4):28–38Google Scholar
  17. 17.
    MongoDB: Mongodb. https://www.mongodb.com. Accessed: 11 Apr 2017
  18. 18.
    Győrödi C, Győrödi R, Pecherle G, Olah A (2015) A comparative study: MongoDB vs. MySQL. In: 13th international conference on engineering of modern electric systems (EMES). IEEE, pp 1–6Google Scholar
  19. 19.
    Apache: Kafka. http://kafka.apache.org. Accessed: 11 Apr 2017
  20. 20.
    Ranjan R (2014) Streaming big data processing in datacenter clouds. IEEE Cloud Comput 1(1):78–83CrossRefGoogle Scholar
  21. 21.
    Blefari-Melazzi N, Sorte DD, Femminella M, Reali G (2007) Autonomic control and personalization of a wireless access network. Comput Netw 51(10):2645–2676CrossRefzbMATHGoogle Scholar
  22. 22.
    Baruffa G, Femminella M, Pergolesi M, Reali G (2016) A cloud computing architecture for spectrum sensing as a service. In: Cloudification of the Internet of Things (CIoT), pp 1–5Google Scholar
  23. 23.
    Sun H, Nallanathan A, Wang CX, Chen Y (2013) Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun 20(2):74–81CrossRefGoogle Scholar
  24. 24.
    Li Z, Yu FR, Huang M (2010) A distributed consensus-based cooperative spectrum-sensing scheme in cognitive radios. IEEE Trans Veh Technol 59(1):383–393CrossRefGoogle Scholar
  25. 25.
    Kotobi K et al (2015) Data-throughput enhancement using data mining-informed cognitive radio. Electronics 4(2):221CrossRefGoogle Scholar
  26. 26.
    Zhang T et al (2015) A wireless spectrum analyzer in your pocket. In: Proceedings of HotMobile ’15. HotMobile ’15. ACM, New York, pp 69–74Google Scholar
  27. 27.
    Chakraborty A, Das SR (2016) Designing a cloud-based infrastructure for spectrum sensing: a case study for indoor spaces. In: IEEE DCOSS 2016. Washington DC, pp 17–24Google Scholar
  28. 28.
    Ulversoy T (2010) Software defined radio: challenges and opportunities. IEEE Commun Surv Tutor 12 (4):531–550CrossRefGoogle Scholar
  29. 29.
    Open IoT Consortium: open IoT. http://openiot.eu. Accessed: 11 Apr 2017
  30. 30.
    Amazon: Amazon AWS. http://aws.amazon.com/. Accessed: 11 Apr 2017
  31. 31.
    Google: Google Cloud. https://cloud.google.com/compute. Accessed: 11 Apr 2017
  32. 32.
    Openstack: Openstack. https://www.openstack.org/. Accessed: 15 Dec 2017
  33. 33.
    Apache: Avro. http://avro.apache.org/. Accessed: 11 Apr 2017
  34. 34.
    Maeda K (2012) Performance evaluation of object serialization libraries in XML, JSON and binary formats. In: 2012 second international conference on digital information and communication technology and its applications (DICTAP). IEEE, pp 177–182Google Scholar
  35. 35.
    Popa L et al (2012) Faircloud: sharing the network in cloud computing. In: ACM SIGCOMM 2012. ACM, pp 187–198Google Scholar
  36. 36.
    Ousterhout K et al (2015) Making sense of performance in data analytics frameworks. In: USENIX NSDI’15. OaklandGoogle Scholar
  37. 37.
    Chakraborty A, Gupta U, Das SR (2016) Benchmarking resource usage for spectrum sensing on commodity mobile devices. In: ACM HotWireless, New YorkGoogle Scholar
  38. 38.
    Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51 (1):107–113CrossRefGoogle Scholar
  39. 39.
    The Java Tutorials. Oracle: using prepared statements. http://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html. Accessed: 12 Apr 2017
  40. 40.
    MongoDB: MongoDB connector for Hadoop. https://github.com/mongodb/mongo-hadoop. Accessed: 11 Apr 2017

Copyright information

© Institut Mines-Télécom and Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations