Annals of Telecommunications

, Volume 72, Issue 11–12, pp 693–702 | Cite as

GA3: scalable, distributed address assignment for dynamic data center networks

  • Elisa Rojas
  • Joaquin Alvarez-Horcajo
  • Isaias Martinez-Yelmo
  • Jose M. Arco
  • Juan A. Carral
Article
  • 152 Downloads

Abstract

Deployment and maintenance of current data center networks is costly and prone to errors. In order to avoid manual configuration, many of them require centralized administrators which constitute a clear bottleneck, while distributed approaches do not guarantee sufficient flexibility or robustness. This paper describes and evaluates GA3 (Generalized Automatic Address Assignment), a discovery protocol that assigns multiple unique labels to all the switches in a hierarchical network, without any modification of hosts or the standard Ethernet frames. Labeling is distributed and uses probes. These labels can be leveraged for shortest path routing without tables, as in the case of the Torii protocol, but GA3 also allows other label-based routing protocols (such as PortLand or ALIAS). Additionally, GA3 can detect miswirings in the network. Furthermore, control traffic is only necessary upon network deployment rather than periodically. Simulation results showed a reduced convergence time of less than 2 s and 100 kB/s of bandwidth (to send the GA3 frames) in the worst case for popular data center topologies, which outperforms other similar protocols.

Keywords

Data centers Automatic address assignment Misconfiguration detection Shortest path bridges 

Notes

Acknowledgments

This work was supported in part by grants from Comunidad de Madrid through Project TIGRE5-CM (S2013/ICE-2919).

References

  1. 1.
    Walraed-Sullivan M, Mysore RN, Tewari M, Zhang Y, Marzullo K (2011) A Vahdat, ALIAS: Scalable, decentralized label assignment for data centers. In: SoCC, ACM, p 6Google Scholar
  2. 2.
    Agarwal R, Mudigonda J, Yalagandula P, Mogul JC (2015) An Algorithmic Approach to Datacenter Cabling, HP Laboratories, Tech. Rep HPL-2015-8Google Scholar
  3. 3.
    Potharaju R, Jain N (2013) When the network crumbles: an empirical study of cloud network failures and their impact on services. In: SoCC. ACM, pp 15:1–15:17Google Scholar
  4. 4.
    Xia Y, Schlansker M, Ng TSE, Tourrilhes J (2015) Enabling Topological Flexibility for Data Centers Using OmniSwitch. In: 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15)Google Scholar
  5. 5.
    Curtis A, Carpenter T, Elsheikh M, Lopez-Ortiz A, Keshav S (2012) REWIRE: An optimization-based framework for unstructured data center network design. In: INFOCOM, 2012 Proceedings IEEE, pp 1116–1124Google Scholar
  6. 6.
    Walraed-Sullivan M, Mysore RN, Marzullo K, Vahdat A (2013) A Randomized Algorithm for Label Assignment in Dynamic Networks, Microsoft Research, Tech. Rep CS2013-0994Google Scholar
  7. 7.
    Jin X, Farrington N, Rexford J (2016) Your Data Center Switch is Trying Too Hard. In: ACM Symposium on SDN Research (SOSR 2016)Google Scholar
  8. 8.
    Rojas E, Ibanez G, Gimenez-Guzman JM, Rivera D, Azcorra A (Feb. 2015) Torii: multipath distributed Ethernet fabric protocol for data centres with zero-loss path repair. Transactions on Emerging Telecommunications Technologies 26(2):179–194Google Scholar
  9. 9.
    Rojas E, Ibanez G, Gimenez-Guzman JM, Carral JA, Garcia-Martinez A, Martinez-Yelmo I, Arco JM (2015) All-Path bridging: Path exploration protocols for data center and campus networks. Comput Netw 79:120–132CrossRefGoogle Scholar
  10. 10.
    Ramos RM, Martinello M, Rothenberg CE (2013) SlickFlow: Resilient source routing in Data Center Networks unlocked by OpenFlow. 38th Annual IEEE Conference on Local Computer Networks 0:606–613CrossRefGoogle Scholar
  11. 11.
    Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. ACM SIGCOMM Computer Communication Review 38(4):63–74CrossRefGoogle Scholar
  12. 12.
    (2009) IEEE 802.1AB (LLDP) SpecificationGoogle Scholar
  13. 13.
    Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri P, Radhakrishnan S, Subramanya V, Vahdat A (2009) PortLand: a scalable fault-tolerant layer 2 data center network fabric. SIGCOMM Comput Commun Rev 39(4):39–50CrossRefGoogle Scholar
  14. 14.
    Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) VL2: a scalable and flexible data center network. SIGCOMM Comput Commun Rev 39(4):51–62CrossRefGoogle Scholar
  15. 15.
    Singh A, Ong J, Agarwal A, Anderson G, Armistead A, Bannon R, Boving S, Desai G, Felderman B, Germano P, Kanagala A, Provost J, Simmons J, Tanda E, Wanderer J, Hölzle U., Stuart S, Vahdat A (2015) Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network. SIGCOMM Comput Commun Rev 45(4):183–197CrossRefGoogle Scholar
  16. 16.
    Chen T, Gao X, Chen G (2016) The features, hardware, and architectures of data center networks: A survey. J Parallel Distrib Comput 96:45–74CrossRefGoogle Scholar
  17. 17.
    Rojas-Cessa R, Kaymak Y, Dong Z (2015) Schemes for Fast Transmission of Flows in Data Center Networks. IEEE Commun Surv Tutorials 17(3):1391–1422CrossRefGoogle Scholar
  18. 18.
    Xia W, Zhao P, Wen Y, Xie H (2016) A Survey on Data Center Networking (DCN): Infrastructure and Operations. IEEE Commun Surv Tutorials 99:1–1Google Scholar
  19. 19.
    eTorii (GitHub).” [Online]. Available: https://github.com/gistnetserv-uah/eTorii
  20. 20.
    Farkas J, Farkas J, Salvador M, dos Santos G (2008) Automatic Discovery of Physical Topology in Ethernet Networks. In: AINA 2008 22nd International Conference on Advanced Information Networking and Applications, 2008, pp 848– 854Google Scholar
  21. 21.
    Chen K, Guo C, Wu H, Yuan J, Feng Z, Chen Y, Lu S, Wu W (2012) DAC: Generic and Automatic Address Configuration for Data Center Networks. IEEE/ACM Trans Networking 20(1):84–99CrossRefGoogle Scholar
  22. 22.
    Deng G, Wang H, Gong Z (2014) Tree-conf: A fast automatic address configuration method for tree-like data center networks. In: 2014 International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp 1–6Google Scholar
  23. 23.
    Hu Y, Zhu M, Xia Y, Chen K, Luo Y (2012) GARDEN: Generic Addressing and Routing for Data Center Networks. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp 107–114Google Scholar
  24. 24.
    Fogel A, Fung S, Pedrosa L, Walraed-Sullivan M, Govindan R, Mahajan R, Millstein T (2015) A general approach to network configuration analysis, Networked Systems Design and ImplementationGoogle Scholar
  25. 25.
    Ma X, Hu C, Chen K, Zhang C, Zhang H, Zheng K, Chen Y, Sun X (2012) Error Tolerant Address Configuration for Data Center Networks with Malfunctioning Devices. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS), pp 708–717Google Scholar
  26. 26.
    Jiang C, Liang W, Xu M, Liu L (2014) MTR: Fault tolerant routing in Clos data center network with miswiring links. In: 2014 IEEE 20th International Workshop on Local Metropolitan Area Networks (LANMAN), pp 1–6Google Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2017

Authors and Affiliations

  • Elisa Rojas
    • 1
  • Joaquin Alvarez-Horcajo
    • 2
  • Isaias Martinez-Yelmo
    • 2
  • Jose M. Arco
    • 2
  • Juan A. Carral
    • 2
  1. 1.Telcaria Ideas S.L.MadridSpain
  2. 2.University of Alcala, Alcala de HenaresMadridSpain

Personalised recommendations