Annals of Telecommunications

, Volume 71, Issue 9–10, pp 527–537 | Cite as

Dielectric loaded quasi-lumped element resonator antenna circuit model for U-NII/ISM band wireless applications

  • Seyi Stephen OlokedeEmail author
  • Mohd Fadzil Ain
  • Zainal Arifin Ahmad


In this paper, an analytical procedure for characterizing the dielectric loaded quasi-lumped element resonator (QLER) antenna for wireless applications is presented. The procedure is to examine the equivalent circuit model for the dielectric loaded QLER antenna and its feed structure, based on transmission line theory and equivalent lumped-element circuits. The corresponding lumped-circuit parameters of the equivalent circuit are extracted using analytical formulae taken from the literature and validated by comparison with numerical simulations such as a full-wave finite-element computer code and with experiments. The devised equivalent circuit explains its behavior as either a wide bandwidth or dual-band antenna, depending on the spacing between the dielectric resonator (DR) and the coaxial feed probe location.


Quasi-lumped element resonator Dielectric resonator Antenna miniaturization Equivalent circuit characterisation 



The authors would like to acknowledge Universiti Sains Malaysia for research grant numbers 1001/PELECT/854004 RUT.


  1. 1.
    Caratelli D, Cicchetti R, Bit-Babik G, Faraone A (2006) Circuit model and near-field behavior of a novel patch antenna for WWLAN applications. Microw Opt Technol Lett 1(49):97–100Google Scholar
  2. 2.
    Ain MF, Olokede SS, Qasaymeh YM, Marzuki A, Mohammed JJ, Sreekantan S, Hutagalung SD, Ahmad ZA, Abdulla MZ (2013) A novel 5.8 GHz quasi-lumped element resonator antenna. AEU - Int J Electron Commun 7(67):557–563CrossRefGoogle Scholar
  3. 3.
    Alley G (1970) Interdigital capacitors and their application to lumped-element microwave-integrated circuits. IEEE Trans Microw Theory Tech 18:1028–1033CrossRefGoogle Scholar
  4. 4.
    Gevorgian S, Martinsson T, Linner P, Kolberg E (1996) CAD models for multilayered substrate interdigital capacitors. IEEE Trans Microw Theory Tech 44:896–904CrossRefGoogle Scholar
  5. 5.
    Sadhir V, Bahl I, Willems D (1994) CAD-compatible accurate models of microwave passive elements for MMIC applications. Int J Microw Millimeter Wave CAE 4:148–162Google Scholar
  6. 6.
    Hobdell J (1979) Optimization of interdigital capacitors. IEEE Trans Microw Theory Tech 27:788–791CrossRefGoogle Scholar
  7. 7.
    Chi C, Rebeiz G (1995) Planar microwave and millimeter-wave lumped elements and coupled-line filters using micro-machining techniques. IEEE Trans Microw Theory Tech 43:730–738CrossRefGoogle Scholar
  8. 8.
    Pettenpaul E, Kapusta H, Weisgerber A, Mampe H, Luginsland J, Wolff I (1988) CAD models of lumped elements on GaAs up to 18 GHz. IEEE Trans Microw Theory Tech 36:294–304CrossRefGoogle Scholar
  9. 9.
    Zhu L, Wu K (2000) Accurate circuit model of an interdigital capacitor and its application to the design of new quasi-lumped miniaturized filters with suppression of harmonic resonance. IEEE Trans Microw Theory Tech 48:347–356CrossRefGoogle Scholar
  10. 10.
    Kulke R, Pogatzki P, Kother D, Sporkmann T, and Wolff I (1994) Enhancement of coplanar capacitor models and verification up to 67 GHz for (M)MIC circuit design, Proc 24th European Microwave Conf, Cannes, pp. 258 –262Google Scholar
  11. 11.
    Naghed M, Wolff I (1990) Equivalent capacitances of CPW discontinuities and interdigitated capacitors using a three-dimensional finite-difference method. IEEE Trans Microw Theory Tech 38:1808–1815CrossRefGoogle Scholar
  12. 12.
    Dib N, Ababneh J, Omar A (2005) “CAD Modeling of Coplanar Waveguide Interdigital Capacitor”, Int. J RF Microw Comput Aided Eng 6(15):551–559CrossRefGoogle Scholar
  13. 13.
    Bahl IJ (2003) Lumped Elements for RF and Microwave Circuits. Artech House, BostonGoogle Scholar
  14. 14.
    Mamishev AV, Sundara-Rajan K, Fumin Y, Yanqing D, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 5(92):808–845CrossRefGoogle Scholar
  15. 15.
    Best SR (2005) Low Q electrically small linear and elliptical polarized spherical dipole antennas. IEEE Trans Antennas Propag 3(18):1047–1053CrossRefGoogle Scholar
  16. 16.
    Collin RE (1992) Foundations for microwave engineering [Hauptw.], 2nd edn. MacGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Neshati M. Wu HZ (2001) The determination of the resonance frequency of the TE111 y mode in a rectangular dielectric resonator for antenna application, Antennas and Propagation, Eleventh International Conference on (IEE Conf. Publ. No. 480), (1), 53–56Google Scholar
  18. 18.
    Olokede SS, Adamariko CA, Qasaymeh YM (2015) Equivalent circuit model of a coaxial excited microstrip-fed quasi-lumped element resonator antenna array. IET Microw Antennas Propag 9(5):446–453CrossRefGoogle Scholar
  19. 19.
    Ain MF, Qasaymeh YMA, Ahmad ZA, Zakariya MA, Othman MA, Sulaiman AA, Othman A, Hutagalung SD, Abdullah MZ (2010) A novel 5.8 GHz high gain array dielectric resonator antenna. Prog Electromagn Res C 15:201–210CrossRefGoogle Scholar
  20. 20.
    Kajfez D, Guillon P (1986) Dielectric resonators. Artech House, DedhamGoogle Scholar
  21. 21.
    Kishk AA, Xiao Z, Glisson AW, Kajfez D (2003) Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications. IEEE Trans Antennas Prop 8(51):1996–2006CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Fan J, Selli G, Cocchini M, Paulis FD (2008) Analytical evaluation of via-plate capacitance for multilayer printed circuit boards and packages. IEEE Trans on Microw Theory Tech 9(56):2118–2128CrossRefGoogle Scholar
  23. 23.
    Zhang YJ, Feng G, Fan J (2010) A novel impedance definition of a parallel plate pair for an intrinsic via circuit model. IEEE Trans on Microw Theory Tech 12(58):3780–3789CrossRefGoogle Scholar
  24. 24.
    Hu Y, Zhang YJ, Fan J (2012) Equivalent circuit model of coaxial probes for patch antennas. Prog Electromagn Res B 38:281–296CrossRefGoogle Scholar
  25. 25.
    Zhang YJ, Fan J (2010) An intrinsic circuit model for multiple vias in an irregular plate pair through rigorous electromagnetic analysis. IEEE Trans on Microw Theory Tech 8(58):2251–2265MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gong J, Volakis JL (1995) An efficient and accurate model of the coaxial cable feeding structure for FEM simulation. IEEE Trans Antennas Propag 12(43):1474–1478CrossRefGoogle Scholar
  27. 27.
    Davidovitz M, Lo YT (1986) Input impedance of a probe-fed circular microstrip antenna with thick substrate. IEEE Trans Antennas Propag 7(34):905–911CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2016

Authors and Affiliations

  • Seyi Stephen Olokede
    • 1
    Email author
  • Mohd Fadzil Ain
    • 1
  • Zainal Arifin Ahmad
    • 2
  1. 1.School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.School of Mineral and Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations