Improving web experience on DVB-RCS2 links

  • Nicolas Kuhn
  • Olivier Mehani
  • Huyen-Chi Bui
  • Emmanuel Lochin
  • Jérôme Lacan
  • José Radzik
  • Roksana Boreli


The specifications of digital video broadcasting—return channel via satellite (DVB-RCS2) state that the satellite gateway could introduce both random and dedicated access methods to distribute the capacity among the different home users. Before starting an engineering process to design an algorithm allowing to combine both methods, it seems necessary to assess the performance of each. This paper compares random and dedicated access methods by measuring their impact on the performance of transmission control protocol (TCP) sessions when the home users exploit the DVB-RCS2 link for regular use (e.g., web browsing or email transmission). In this paper, we detail the implementation of an NS-2 module emulating physical channel access (PCA). This module fills a gap in terms of random and deterministic access methods and allows to model various satellite channel access strategies. Based on NS-2 simulations using realistic system parameters of the DVB-RCS2 link, we demonstrate that, compared to dedicated access methods, which generally result in higher levels of transmitted data, random access methods enable faster transmission for short flows. We propose to combine random and dedicated access methods, with the selection of a specific method dependent on the dynamic load of the network and the sequence number of the TCP segments.


Access methods NS-2 DVB DVB-RCS2 TCP 


  1. 1.
    Second generation DVB interactive satellite system; part 1: overview and system level specification. In: Digital Video Broadcasting (DVB) TS 101 545-1Google Scholar
  2. 2.
    Second generation DVB interactive satellite system; part 2: lower layers for satellite standard. In: Digital Video Broadcasting (DVB) ETSI EN 101 545-2 V1.1.1Google Scholar
  3. 3.
    Second generation dvb interactive satellite system (dvb-rcs2); part 3: higher layers satellite specification. In: Digital Video Broadcasting (DVB) TS 101 545–3Google Scholar
  4. 4.
    O3b Networks and Sofrecom (2013) Why latency matters to mobile backhaul. Tech. rep., O3b NetworksGoogle Scholar
  5. 5.
    Kuhn N, Mehani O, Bui HC, Lacan J, Radzik J, Lochin E (2013) Physical Channel Access (PCA): time and frequency access methods simulation in NS-2. In: 5th international conference on personal satellite services (PSATS)Google Scholar
  6. 6.
    Kuhn N, Bui HC, Lacan J, Radzik J, Lochin E (2013) On the benefits of random access methods on TCP performance over DVB-RCS2. In: ACM MobiCom workshop on lowest cost denominator networking for universal access (LCDNet)Google Scholar
  7. 7.
    Herrero O, Gaudenzi R, Vidal J (2012) Design guidelines for advanced random access protocols. In: International conference on satellite and space communications (ICSSC)Google Scholar
  8. 8.
    Casini E, De Gaudenzi R, Herrero O (2007) Contention resolution diversity slotted ALOHA (CRDSA): an enhanced random access schemefor satellite access packet networks. IEEE Trans Wirel Commun 6:1408–1419. doi: 10.1109/TWC.2007.348337 CrossRefGoogle Scholar
  9. 9.
    Bui HC, Lacan J, Boucheret ML (2012) An enhanced multiple random access scheme for satellite communications. In: Wireless telecommunications symposium (WTS). London, UKGoogle Scholar
  10. 10.
    Abramson N (1970) The ALOHA system: another alternative for computer communications. In: Proceedings of the November 17–19, 1970, fall joint computer conference, AFIPS ‘70 (Fall). ACM, New York, pp 281–285. doi: 10.1145/1478462.1478502
  11. 11.
    Choudhury G, Rappaport S (1983) Diversity ALOHA—a random access scheme for satellite communications. IEEE Trans Wirel Commun 31:450–457. doi: 10.1109/TCOM.1983.1095828 CrossRefGoogle Scholar
  12. 12.
    Błaszczyszyn B, Mühlethaler P, Toor Y (2013) Stochastic analysis of aloha in vehicular ad hoc networks. Annales of TelecommunicationsGoogle Scholar
  13. 13.
    Espes D, Lagrange X, Surez L (2015) A cross-layer mac and routing protocol based on slotted aloha for wireless sensor networks. Annales of TelecommunicationsGoogle Scholar
  14. 14.
    Roseti C, Kristiansen E (2006) TCP behaviour in a DVB-RCS environment. In: International communications satellite systems conferences (ICSSC). doi: 10.2514/ICSSC.6.2006-5404
  15. 15.
    Luglio M, Zampognaro F, Morell T, Vieira F (2007) Joint DAMA-TCP protocol optimization through multiple cross layer interactions in DVB RCS scenario. In: International workshop on satellite and space communications (IWSSC), pp 121 –125. doi: 10.1109/IWSSC.2007.4409402
  16. 16.
    Belli F, Luglio M, Roseti C, Zampognaro F (2009) Evaluation of TCP performance over emulated DVB-RCS scenario with multiple RCSTs. In: International workshop on satellite and space communications (IWSSC), pp 424–428. doi: 10.1109/IWSSC.2009.5286320
  17. 17.
    Celandroni N, Secchi R (2009) Suitability of dama and contention-based satellite access schemes for tcp traffic in mobile dvb-rcs. IEEE Trans Veh Technol 58(4):1836–1845. doi: 10.1109/TVT.2008.2007899 CrossRefGoogle Scholar
  18. 18.
    Tambuwal A, Secchi R, Fairhurst G (2011) Exploration of random access in DVB-RCS. In: PostGraduate symposium on the convergence of telecommunications, networking and broadcasting (PGNET)Google Scholar
  19. 19.
    Celandroni N, Davoli F, Ferro E, Gotta A (2012) Employing contention resolution random access schemes for elastic traffic on satellite channels. In: 18th Ka and broadband communications navigation and earth observation conference, pp 271–277Google Scholar
  20. 20.
    Bacco M, Gotta A, Roseti C, Zampognaro F (2014) A study on TCP error recovery interaction with Random Access satellite schemes. In: Advanced satellite multimedia systems conference and the 13th signal processing for space communications workshop (ASMS/SPSC), 2014 7th, pp 405–410. doi: 10.1109/ASMS-SPSC.2014.6934574
  21. 21.
    Lochin E, Pérennou T, Dairaine L (2012) When should I use network emulation? Ann Telecommun 67:247–255. doi: 10.1007/s12243-011-0268-5 CrossRefGoogle Scholar
  22. 22.
    Gayraud T, Bertaux L, Berthou P (2009) A NS-2 simulation model of DVB-S2/RCS satellite network. In: 15th Kaband conference (Italy), vol 1. 09702 09702
  23. 23.
    Secchi R (2011) DVB-RCS(2) for ns-2. Technical report, University of Aberdeen.
  24. 24.
    Bui HC, Lacan J, Boucheret ML (2012) Access methods based on physical-layer network coding. Ph.D. thesis (ISAE)Google Scholar
  25. 25.
    Ciullo D, Mellia M, Meo M (2009) Two schemes to reduce latency in short lived TCP flows. IEEE Commun Lett 13:806–808. doi: 10.1109/LCOMM.2009.091149 CrossRefGoogle Scholar
  26. 26.
    Labovitz C, Iekel-Johnson S, McPherson D, Oberheide J, Jahanian F, Karir M (2009) Atlas internet observatory annual report. In: 47th NANOGGoogle Scholar
  27. 27.
    Cao J, Cleveland W, Gao Y, Jeffay K, Smith F, Weigle M (2004) Stochastic models for generating synthetic http source traffic. In: INFOCOM 2004. Twenty-third AnnualJoint conference of the IEEE computer and communications societies, vol 3, pp 546–1557. doi: 10.1109/INFCOM.2004.1354568
  28. 28.
    Celis Muñoz EA, Le Denmat F, Morin A, Lagrange X (2014) Multimedia content delivery trigger in a mobile network to reduce the peak load. Annales of TelecommunicationsGoogle Scholar
  29. 29.
    Kissling C, Munari A (2013) On the integration of random access and DAMA channels for the return link of satellite networks. In: IEEE international conference on communications (ICC)Google Scholar
  30. 30.
    Bixby J (2013) Top ecommerce sites are 22 % slower than they were last year.

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2015

Authors and Affiliations

  • Nicolas Kuhn
    • 1
    • 2
    • 3
  • Olivier Mehani
    • 3
  • Huyen-Chi Bui
    • 2
  • Emmanuel Lochin
    • 2
  • Jérôme Lacan
    • 2
  • José Radzik
    • 2
  • Roksana Boreli
    • 3
  1. 1.IMT Télécom Bretagne, IRISACesson-SevigneFrance
  2. 2.ISAEToulouseFrance
  3. 3.National ICT AustraliaEveleighAustralia

Personalised recommendations