Stereoscopic video watermarking: a comparative study

Article

Abstract

Despite the sound theoretical, methodological, and experimental background inherited from 2D video, the stereoscopic video watermarking imposed itself as an open research topic. Paving the way towards practical deployment of such copyright protection mechanisms, the present paper is structured as a comparative study on the main classes of 2D watermarking methods (spread spectrum, side information, hybrid) and on their related optimal stereoscopic insertion domains (view or disparity based). The performances are evaluated in terms of transparency, robustness, and computational cost. First, the watermarked content transparency is assessed by both subjective protocols (according to ITU-R BT 500-12 and BT 1438 recommendations) and objective quality measures (five metrics based on differences between pixels and on correlation). Secondly, the robustness is objectively expressed by means of the watermark detection bit error rate against several classes of attacks, such as linear and nonlinear filtering, compression, and geometric transformations. Thirdly, the computational cost is estimated for each processing step involved in the watermarking chain. All the quantitative results are obtained out of processing two corpora of stereoscopic visual content: (1) the 3DLive corpus, summing up about 2 h of 3D TV content captured by French professionals, and (2) the MPEG 3D video reference corpus, composed of 17 min provided by both academic communities and industrials. It was thus established that for a fixed size of the mark, a hybrid watermark insertion performed into a new disparity map representation is the only solution jointly featuring imperceptibility (according to the subjective tests), robustness against the three classes of attacks, and nonprohibitive computational cost.

Keywords

Robust stereoscopic watermarking Spread spectrum Side information Hybrid watermarking Stereoscopic disparity map HD 3D TV 

References

  1. 1.
    Cox I, KIian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12)Google Scholar
  2. 2.
    Cox I, Miller M, Bloom J (2002) Digital watermarking. Morgan Kaufmann, San MateoGoogle Scholar
  3. 3.
    Shannon CE (1958) Channel with side information at the transmitter. IBM Journal of Research and Development 2(4):289–293MathSciNetCrossRefGoogle Scholar
  4. 4.
    Eggers JJ, Bäuml R, Tzschoppe R, Girod B (2003) Scalar Costa scheme for information embedding. IEEE Trans Signal Process 51(4)Google Scholar
  5. 5.
    Costa MHM (1983) Writing on dirty paper. IEEE Trans Inf Theory IT-29(3):439–441CrossRefGoogle Scholar
  6. 6.
    Mitrea M, Prêteux F, Nunez J (2007) “Procédé de Tatouage d’une Séquence Vidéo.” French patent no. 05 54132 (December 2005); European extension under the number 1804213 (July 2007)Google Scholar
  7. 7.
    Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation. IEEE Trans Circ Syst Video Technol 4(4):438–442CrossRefGoogle Scholar
  8. 8.
    ISO/IEC JTC1/SC29/WG11 (2009) Depth estimation reference software (DERS) with image segmentation and block matching, M16092 (February 2009)Google Scholar
  9. 9.
    Stankiewics O, Wegner K (2008) Depth map estimation software, ISO/IEC JTC1/SC29/WG11 MPEG/M15175, Antalya (January 2008)Google Scholar
  10. 10.
    Hasnaoui M, Belhaj M, Mitrea M, Prêteux F (2011) mQIM principles for MPEG-4 AVC watermarking, SPIE Photonics West 2011 (January 2011)Google Scholar
  11. 11.
    Belhaj M, Mitrea M, Duta S, and Preteux F (2010) MPEG-4 AVC robust video watermarking based on QIM and perceptual masking. In: International conference on communication, Bucharest (June 2010)Google Scholar
  12. 12.
    Mitrea M, Prêteux F (2007) Tatouage robuste des contenus multimédias. In: Chaouchi H, Laurent-Maknavicius M (eds) La sécurité dans les réseaux sans fil et mobiles. Lavoisier, ParisGoogle Scholar
  13. 13.
    Chammem A, Mitrea M, Preteux F (2011) DWT-based stereoscopic image watermarking. In: Proc. SPIE, vol 786326 (January 2011)Google Scholar
  14. 14.
    Lin S, Costello DJ Jr (1983) Error control coding: fundamentals and applications. Prentice-Hall, Englewood CliffsGoogle Scholar
  15. 15.
    Mitrea M, Prêteux F, Petrescu M, Vlad A (2005) The StirMark watermarking attack in the DWT Domain. In: Proc. of the 12th international workshop on systems, signals and image processing, vol 2, Chalkida, GreeceGoogle Scholar
  16. 16.
    Dong-Choon H, Kyung-Hoon B, Eun-Soo K (2003) Real-time stereo image watermarking using discrete cosine transform and adaptive disparity maps. Multimedia Systems Appl VI, Proc SPIE 5241:233CrossRefGoogle Scholar
  17. 17.
    Dong-Choon H, Kyung-Hoon B, Eun-Soo K (2003) Stereo image watermarking scheme based-on discrete wavelet transform and adaptive disparity estimation. Mathematics of data/image coding, compression, and encryption, with applications. Conference no. 6, San DiegoGoogle Scholar
  18. 18.
    Kumar S, Raman B, Thakur M (2009) Real coded genetic algorithm based stereo image watermarking. IJSDA Int J Secure Digit Inf Age 1(1)Google Scholar
  19. 19.
    Bhatnager G, kumar S, Raman B, Sukavanam N (2009) Stereo coding via digital watermarking. J Electron Imaging 18(3)Google Scholar
  20. 20.
    Campisi P (2008) Object-oriented stereo image digital watermarking. J Electron Imaging 17(4):043024CrossRefGoogle Scholar
  21. 21.
    Yu M, Wang A, Luo T, Jiang G, Li F, Fu S (2011) New block relationship based stereo image watermarking algorithm. In: The sixth international conference on systems and networks communications, ICSNC 2011, pp 171–174 (October 2011)Google Scholar
  22. 22.
    Zhang Z, Zhu Z, Xi L (2007) Novel scheme for watermarking stereo video. Int J Nonlinear Sci 3(1):74–80Google Scholar
  23. 23.
  24. 24.
  25. 25.
    ITU-R (2002) Methodology for the subjective assessment of the quality of television pictures. Tech Rep. BT.500-11, ITU-RGoogle Scholar
  26. 26.
    ITU-R (2000) Subjective assessment of stereoscopic television pictures. Tech Rep BT.1438Google Scholar
  27. 27.
    Kuang K, Hosur PI (1999) Core experimental results of fast motion estimation based on new test conditions (Q4a), ISO/IEC JTC1/SC29/WG11/M4934, Vancouver, B.C. (July 1999)Google Scholar
  28. 28.
    Chammem A, Mitrea M, Prêteux F (2012) Adaptive disparity map computation for stereoscopic video watermarking. In: The IEEE international conference on electronics, circuits, and systems (ICECS), Seville, Spain (December 2012)Google Scholar
  29. 29.
    Chammem A, Mitrea M, Prêteux F (2012) High-definition three-dimensional television disparity map computation. J Electron Imaging 21(4):043024–043024CrossRefGoogle Scholar
  30. 30.
    Eskicioglu MA, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Commun 43(12)Google Scholar
  31. 31.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4)Google Scholar
  32. 32.
    Walpole RE, Myers RH, Myers SL, Ye K (2002) Probability & statistics for engineers and scientists. Pearson Educational International, Upper Saddle RiverGoogle Scholar
  33. 33.
    Petitcolas F, Ross JA, Markus GK (1998) Attacks on copyright marking systems. In: Proceedings on information hiding, second international workshop, IH’98, LNCS 1525, Springer, Portland, pp 219–239 (April 1998). ISBN 3-540-65386-4Google Scholar
  34. 34.
    Petitcolas F (2000) Watermarking schemes evaluation. IEEE Signal Process 17(5):58–64CrossRefGoogle Scholar
  35. 35.
    Galiano V, Lopez O, Malumbres MP, Migallon H (2011) Improving the discrete wavelet transform computation from multicore to GPU-based algorithms. In: Proceedings of the 11th international conference on computational and mathematical methods in science and engineering, CMMSE 2011 (June 2011)Google Scholar
  36. 36.
    Garboan A, Mitrea M, Prêteux F (2013) Cinematography sequences tracking by means of fingeprinting techniques. Ann Telecommun 68(3–4):187–199CrossRefGoogle Scholar
  37. 37.
    Franco-Contreras J, Baudry S, Doerr G (2011) Virtual view invariant domain for 3D video blind watermarking. In: IEEE international conference on image processing, pp 2817–2820Google Scholar
  38. 38.
    Koz A, Çığla C, Aydın AA (2010) Watermarking of free view video. IEEE Trans Image Process 19:1785–1797MathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2013

Authors and Affiliations

  • Afef Chammem
    • 1
  • Mihai Mitrea
    • 1
  • Françoise Prêteux
    • 2
  1. 1.Télécom SudParisInstitut Mines-TélécomÉvryFrance
  2. 2.MINES ParisTechInstitut Mines-TélécomParisFrance

Personalised recommendations