Channel estimation in high date rate UWB system with unknown narrowband interference

  • S. M. Riazul IslamEmail author
  • Sana Ullah
  • Kyung-Sup Kwak


Interference degrades the performance of a correct data signal detection and decoding. This problem becomes rigorous when interferences are present during the period of channel estimation. This will wipe out the accuracy of channel estimation and will eventually result in a severe degradation in the performance of signal detection and decoding in the entire data packet/frame. In this article, we propose improved channel estimation techniques for multiband orthogonal frequency division multiplexing ultra-wideband system in narrowband interfering environment. In particular, we work towards preamble-based channel estimation techniques in the presence of unknown narrowband interference. The interference power on each subcarrier is considered as a nuisance parameter and is averaged out from the corresponding likelihood function. The later is then optimized in an iterative manner according to the quasi-Newton algorithm. Furthermore, we address highly accurate channel estimation in a time-variant channel due to sudden channel change and propose an iterative interpolation method and weighted channel estimation approach to reduce the effect of abrupt channel changes. Link level simulation results indicate that our proposed approaches outperform the conventional estimation methods.


Ultra-wideband (UWB) Multiband Channel estimation ECMA-368 Wireless personal area network (WPAN) 



This research was supported by The Ministry of Knowledge Economy, Korea, under the Information Technology Research Centre support program supervised by the National IT Industry Promotion Agency (NIPA-2011-C1090-1121-0001).


  1. 1.
    European Computer Manufacturer Association (2008) Standard ECMA-368: high rate ultra wideband PHY and MAC standard, 2nd edn. ECMA International, DecGoogle Scholar
  2. 2.
    Islam SMR, Kwak KS (2010) A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB. J Med Syst 36(3):1553–1567. doi: 10.1007/s10916-010-9617-6 CrossRefGoogle Scholar
  3. 3.
    Li Y, Molisch AF, Zhang J (2004) Practical approaches to channel estimation and interference suppression for OFDM based UWB communications. IEEE 6th CAS Symposium on Emerging Technologies: Mobile and Wireless Communications, Shanghai, ChinaGoogle Scholar
  4. 4.
    Tsai Y-R, Wang C-C, Li X-S (2008) Adaptive channel estimation for MB-OFDM systems in multi-access interfering environments. IEEE Vehicular Technology Conference (VTC), Singapore, MayGoogle Scholar
  5. 5.
    Hadaschik N, Zakia I, Ascheid G, Meyr H (2007) Joint narrowband interference detection and channel estimation for wideband OFDM. In: Proceedings of the European Wireless Conference, AprilGoogle Scholar
  6. 6.
    Islam SMR, Kwak KS (2011) Preamble-based improved channel estimation for multiband UWB system in presence of interferences. Telecommun Syst, doi: 10.1007/s11235-011-9440-5
  7. 7.
    Islam SMR, Kwak KS (2011) Zero padded suffix aided subspace-based narrowband interference detected adaptive channel estimation for MB-OFDM UWB systems. Int J Phys Sci 6(1):52–64Google Scholar
  8. 8.
    Morelli M, Moretti M (2009) Channel estimation in OFDM systems with unknown interference. IEEE Trans Wirel Commun 8(10):5338–5347CrossRefGoogle Scholar
  9. 9.
    Islam SMR, Ameen MA, Kwak KS (2011) Channel estimation in ECMA-368-based UWB systems with unknown interference. Telecommun Syst, doi: 10.1007/s11235-011-9631-0
  10. 10.
    Foerster JR et al (2003) Channel modeling sub-committee report final. IEEE 802.15-02/490, Nov. 18Google Scholar
  11. 11.
    Muquet B, Wang Z, Ginnakis G, de Courville M, Duhamel P (2002) Cyclic prefix or zero padding for wireless multicarrier transmission? IEEE Trans Commun 50(12):2136–2148CrossRefGoogle Scholar
  12. 12.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer Series in Operation Research, Springer, New YorkGoogle Scholar
  13. 13.
    Liu H, Zhong H, Zhang T, Gong Z (2006) A quasi-Newton acceleration EM algorithm for OFDM channel estimation. Inf Technol J 5(4):749–752CrossRefGoogle Scholar
  14. 14.
    Nam SH, Yoon JS, Song HK (2008) EM-based low complexity channel estimation for OFDM system. IEEE Trans Consum Electron 54(2):425–430CrossRefGoogle Scholar
  15. 15.
    Morelli M, Mengali U (2001) A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans Signal Process 49:3065–3073CrossRefGoogle Scholar
  16. 16.
    Molisch A, Foerster J, Pendergrass M (2003) Channel models for ultra-wideband personal area networks. IEEE Commun Mag 10(6):14–21Google Scholar
  17. 17.
    IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs) (2002) Time Variance for UWB Wireless Channels. NovemberGoogle Scholar
  18. 18.
    Li Y, Minn H, Jacobs T, Win MZ (2008) Frequency offset estimation for MB-OFDM-based UWB systems. IEEE Trans Commun 56(6):968–979CrossRefGoogle Scholar
  19. 19.
    Keijo P, Koi V (2007) Iterative interpolation method for multiband-OFDM channel estimation. IEEE International Conference on Ultra-wideband (ICUWB), SingaporeGoogle Scholar
  20. 20.
    Pagani P, Pajusco P (2006) Modeling the space- and time-variant ultra-wideband propagation channel. In: IEEE International Conference on Ultra Wide Band, Waltham, MA, USAGoogle Scholar
  21. 21.
    Pagani P, Pajusco P (2006) Characterization and modeling of temporal variations on an ultra-wideband radio link. IEEE Trans Antennas Propag 54(11–1):3198–3206CrossRefGoogle Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag France 2012

Authors and Affiliations

  • S. M. Riazul Islam
    • 1
    Email author
  • Sana Ullah
    • 2
  • Kyung-Sup Kwak
    • 3
  1. 1.Applied Physics, Electronics and Communication EngineeringUniversity of DhakaDhakaBangladesh
  2. 2.Pervasive and Mobile ComputingKing Suad UniversityRiyadhSaudi Arabia
  3. 3.Graduate School of IT and TelecommunicationsInha UniversityIncheonSouth Korea

Personalised recommendations