Low response time context awareness through extensible parameter adaptation with ORCA

  • Jean-Yves TigliEmail author
  • Stéphane Lavirotte
  • Gaëtan Rey
  • Vincent Hourdin
  • Nicolas Ferry
  • Christophe Vergoni
  • Michel Riveill


Ubiquitous computing applications or widespread robots interactions execute in unforeseen environments and need to adapt to changeful available services, user needs, and variations of the environment. Context-awareness ability addresses such a need, enabling, through adaptation rules, applications to react to the perceived dynamic variations. Responses to adaptation have to be quick enough to maximize the time during which the application is coherent with its environment. Adaptation rules, associating variations of the environment to application reactions, are usually established at design time. However, in unforeseen and partially anticipated environments, we claim that adaptation rules have to be dynamically extensible to match previously unexpected variations. Our approach enables rule composition and ensures a deterministic result. We propose to use parameter adaptation to quickly respond to environmental variations and dynamic compositional adaptation to provide extensibility to the parameter adaptation. To foster even lower response times, we internalize context-awareness processing and decision into the application.


Response time Dynamic adaptation Internalized context awareness Rule composition Extensible parameter adaptation 


  1. 1.
    Kim J, Kim Y, Lee K (2004) The third generation of robotics: ubiquitous robot. In: International conference on autonomous robots and agents, CiteseerGoogle Scholar
  2. 2.
    Dey A, Abowd G (2000) Towards a better understanding of context and context-awareness. In CHI 2000 workshop on the what, who, where, when, and how of context-awareness, vol 4. Citeseer, pp 1–6Google Scholar
  3. 3.
    Gigras Y, Gupta K (2011) Ambient intelligence in ubiquitous robotics. International Journal of Computer Science and Information Technologies (IJCSIT) 2(4):1438–1440Google Scholar
  4. 4.
    Ferry N, Hourdin V, Lavirotte S, Rey G, Tigli J-Y, Riveill M (2009) Models at runtime: service for device composition and adaptation. In: 4th international workshop Models@Run.Time at models 2009 (MRT’09), pp 51–60Google Scholar
  5. 5.
    Lingrand D, Lavirotte S, Tigli J-Y (2005) Selection using non symmetric context areas. In: Workshop on context-aware mobile systems (CAMS). LNCS, vol 3762. Springer, OnTheMove Federated Conferences (OTM’05), pp 225–228Google Scholar
  6. 6.
    Bouzeghoub A, Taconet C, Jarraya A, Do N, Conan D (2010) Complementarity of process-oriented and ontology-based context managers to identify situations. In: Int. workshop on context modeling and management for smart environments (CMMSE), pp 222–229Google Scholar
  7. 7.
    Fox J, Clarke S (2009) Exploring approaches to dynamic adaptation. In: Proceedings of the 3rd international DiscCoTec workshop on middleware-application interaction. ACM, pp 19–24Google Scholar
  8. 8.
    Banavar G, Bernstein A (2004) Challenges in design and software infrastructure for ubiquitous computing applications. Adv Comput 62:179–202CrossRefGoogle Scholar
  9. 9.
    MacKenzie I, Ware C (1993) Lag as a determinant of human performance in interactive systems. In: Proceedings of the INTERACT’93 and CHI’93 conference on human factors in computing systems. ACM, pp. 488–493Google Scholar
  10. 10.
    Kindberg T, Fox A (2002) System software for ubiquitous computing. Pervasive Computing, IEEE 1:70–81CrossRefGoogle Scholar
  11. 11.
    McKinley P, Sadjadi S, Kasten E, Cheng B (2004) Composing adaptive software. Comput 37(7):56–64CrossRefGoogle Scholar
  12. 12.
    Oreizy P, Gorlick M, Taylor R, Heimhigner D, Johnson G, Medvidovic N, Quilici A, Rosenblum D, Wolf A (1999) An architecture-based approach to self-adaptive software. Intelligent Systems, IEEE 14(3):54–62CrossRefGoogle Scholar
  13. 13.
    Biegel G, Cahill V (2004) A framework for developing mobile, context-aware applications. In: Proceedings of the second IEEE Pervasive computing and communications conference, 2004. PerCom 2004, pp 361–365Google Scholar
  14. 14.
    Meier R, Harrington A, Termin T, Cahill V (2006) A spatial programming model for real global smart space applications. In: Distributed applications and interoperable systems. Springer, Berlin, pp 16–31CrossRefGoogle Scholar
  15. 15.
    Beugnard A, Chabridon S, Conan D, Taconet C, Dagnat F, Kaboré E (2009) Towards context-aware components. In: Proceedings of the first international workshop on Context-aware software technology and applications, pp 1–4Google Scholar
  16. 16.
    Tigli J-Y, Lavirotte S, Rey G, Hourdin V, Cheung-Foo-Wo D, Callegari E, Riveill M (2009) WComp middleware for ubiquitous computing: aspects and composite event-based Web services. Annals of Telecommunications (AoT) 64:197–214CrossRefGoogle Scholar
  17. 17.
    Geihs K, Reichle R, Wagner M, Khan M (2009) Service-oriented adaptation in ubiquitous computing environments. In: 2009 international conference on computational science and engineering. IEEE, pp 458–463Google Scholar
  18. 18.
    Kapitsaki GM, Prezerakos GN, Tselikas ND, Venieris IS (2009) Context-aware service engineering: a survey. J Syst Softw 82:1285–1297CrossRefGoogle Scholar
  19. 19.
    Tigli J-Y, Lavirotte S, Rey G, Hourdin V, Riveill M (2009) Context-aware Authorization in highly dynamic environments. International Journal of Computer Science Issues (IJCSI) 4:24–35Google Scholar
  20. 20.
    Athanasopoulos D, Zarras A, Issarny V, Pitoura E, Vassiliadis P (2008) CoWSAMI: Interface-aware context gathering in ambient intelligence environments. Pervasive and Mobile Computing 4(3):360–389CrossRefGoogle Scholar
  21. 21.
    Paspallis N, Rouvoy R, Barone P, Papadopoulos G, Eliassen F, Mamelli A (2008) A pluggable and reconfigurable architecture for a context-aware enabling middleware system. In: On the move to meaningful internet systems: OTM 2008. Springer, Heidelberg, pp 553–570CrossRefGoogle Scholar
  22. 22.
    Hourdin V (2010) Context and security in ubiquitous computing middlewares. PhD thesis, University of Nice - Sophia Antipolis, FranceGoogle Scholar
  23. 23.
    Tigli J-Y, Lavirotte S, Rey G, Hourdin V, Riveill M (2009) Lightweight service oriented architecture for pervasive computing. International Journal of Computer Science Issues (IJCSI) 4:1–9Google Scholar
  24. 24.
    Reichle R, Khan M, Geihs K (2008) How to combine parameter and compositional adaptation in the modeling of self-adaptive applications. PIK, Prax Inf Verarb Kommun 31(1):34–38Google Scholar
  25. 25.
    Geihs K, Reichle R, Wagner M, Khan MU (2009) Modeling of context-aware self-adaptive applications in ubiquitous and service-oriented environments. In: Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (eds) Software engineering for self-adaptive systems. Springer, Berlin, pp 146–163CrossRefGoogle Scholar
  26. 26.
    Tanter É, Gybels K, Denker M, Bergel A (2006) Context-aware aspects. In: Proceedings of software composition 2006. Springer, Vienna, pp 227–242CrossRefGoogle Scholar
  27. 27.
    Autili M, Di Benedetto P, Inverardi P (2009) Context-aware adaptive services: the plastic approach. In: FASE ’09 Proceedings of the 12th international conference on fundamental approaches to software engineering. Springer, Berlin, pp 124–139Google Scholar
  28. 28.
    Keidl M, Kemper A (2004) Towards context-aware adaptable web services. In: Proceedings of the 13th international World Wide Web conference on alternate track papers & posters. ACM, pp 55–65Google Scholar
  29. 29.
    Munnelly J, Fritsch S, Clarke S (2007) An aspect-oriented approach to the modularisation of context. Fifth pervasive computing and communications conference, 2007. PerCom’07. IEEE, pp 114–124Google Scholar
  30. 30.
    Hirschfeld R, Costanza P, Nierstrasz O (2008) Context-oriented programming. J Object Technol 7(3):125–151CrossRefGoogle Scholar
  31. 31.
    Conan D, Rouvoy R, Seinturier L (2007) Scalable processing of context information with cosmos. Distributed Applications and Interoperable Systems 4531:210–224CrossRefGoogle Scholar
  32. 32.
    Gu T, Pung H, Zhang D (2008) Peer-to-peer context reasoning in pervasive computing environments. Sixth Pervasive computing and communications conference, 2008. PerCom 2008. IEEE, pp 406–411Google Scholar

Copyright information

© Institut Mines-Télécom and Springer-Verlag 2012

Authors and Affiliations

  • Jean-Yves Tigli
    • 1
    Email author
  • Stéphane Lavirotte
    • 1
  • Gaëtan Rey
    • 1
  • Vincent Hourdin
    • 1
  • Nicolas Ferry
    • 1
    • 2
  • Christophe Vergoni
    • 1
    • 3
  • Michel Riveill
    • 1
  1. 1.Laboratoire I3S (Université de Nice - Sophia Antipolis/CNRS)Sophia-Antipolis CedexFrance
  2. 2.CSTB (Centre Scientifique et Technique du Bâtiment)Sophia-Antipolis CedexFrance
  3. 3.GFI InformatiqueSophia Antipolis CedexFrance

Personalised recommendations