Statistical study of the influence of building architectural properties on scattered fields in urban environment

  • Shermila MostarshediEmail author
  • Elodie Richalot
  • Man-Fai Wong
  • Joe Wiart
  • Odile Picon


Statistical studies on the reflection coefficient of concrete–glass building facades are conducted using a fast and an accurate method based on the Green’s functions. The variation of different architectural parameters, such as concrete permitting and distribution, size and type of windows, are studied. The influence of selected parameters on the total reflection coefficient of the building is quantified for different incidence and observation angles as well as in different diffraction zones.


Wave propagation Urban environment Scattering Statistical study Green’s functions 


  1. 1.
    Seidel SY, Rappaport TS (1994) Site-specific propagation prediction for wireless in-building personal communication system design. IEEE Transactions on Vehicular Technology 43:879–891CrossRefGoogle Scholar
  2. 2.
    Catedra MF, Perez J, de Adana FS, Gutierrez O (1998) Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios. IEEE Antennas and Propagation Magazine 40:15–28CrossRefGoogle Scholar
  3. 3.
    Landron O, Feuerstein MJ, Rappaport TS (1996) A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Trans on Antennas and Propagation 44:341–351CrossRefGoogle Scholar
  4. 4.
    Pongsilamanee P, Bertoni HL (2004) Specular and nonspecular scattering from building facades. IEEE Transactions on Antennas and Propagation 52:1879–1889CrossRefGoogle Scholar
  5. 5.
    Dimitriou AG, Sergiadis GD (2006) Architectural features and urban propagation. IEEE Trans on Antennas and Propagation 54:774–784CrossRefGoogle Scholar
  6. 6.
    Iskander MF, Yun Z (2002) Propagation prediction models for wireless communication systems. IEEE Transactions on Microwave Theory and Techniques 50:662–673CrossRefGoogle Scholar
  7. 7.
    Mostarshedi S, Richalot E, Laheurte JM, Wong MF, Wiart J, Picon O (2010) Fast and accurate calculation of scattered electromagnetic fields from building faces using Green’s functions of semi-infinite medium. IET Microwaves, Antennas & Propagation 4:72–82CrossRefGoogle Scholar
  8. 8.
    Mostarshedi S, Richalot E, Picon O (2009) Semi-infinite reflection model of a multilayered dielectric through equivalent permittivity calculation. Microwave and Optical Technology Letters 51:290–294CrossRefGoogle Scholar
  9. 9.
    Adous, M. (2006) Caractérisation électromagnétique des matériaux traités de génie civil dans la bande de fréquences 50 MHz–13 GHz. PhD thesis, Université de Nantes, Nantes, FranceGoogle Scholar
  10. 10.
    Robert A (1998) Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J Appl Geophys 40:89–94CrossRefGoogle Scholar
  11. 11.
    Haddad RH, Al-Qadi IL (1998) Characterization of portland cement concrete using electromagnetic waves over the microwave frequencies. Cement and concrete research 28:1379–1391CrossRefGoogle Scholar
  12. 12.
    Gustafsson M, Karlsson A, Rebelo AP, Widenberg B (2006) Design of frequency selective windows for improved indoor outdoor communication. IEEE Transactions on Antennas and Propagation 54:1897–1900CrossRefGoogle Scholar
  13. 13.
    Widenberg B, Rodríguez JVR (2002) Design of energy saving windows with high transmission at 900 MHz and 1800 MHz, Tech. Rep. LUTEDX/(TEAT-7110)/1-14, Lund Institute of Technology, LundGoogle Scholar

Copyright information

© Institut Télécom and Springer-Verlag 2011

Authors and Affiliations

  • Shermila Mostarshedi
    • 1
    Email author
  • Elodie Richalot
    • 1
  • Man-Fai Wong
    • 2
  • Joe Wiart
    • 2
  • Odile Picon
    • 1
  1. 1.ESYCOM LaboratoryUniversité Paris-EstMarne-la-Vallée Cedex 2France
  2. 2.Orange LabsIssy-les-Moulineaux Cedex 9France

Personalised recommendations